cochlea
发表于 2025-3-25 03:30:47
http://reply.papertrans.cn/32/3177/317651/317651_21.png
寡头政治
发表于 2025-3-25 08:58:42
Studies in Fuzziness and Soft Computingdescribed by a nonlinear dynamical system, then it is usually difficult to predict whether or not the system will evolve towards a stationary state or it will exhibit a chaotic behavior. The sensibility to the initial conditions and to the parameters characterizing the nonlinear system show that a c
CLAMP
发表于 2025-3-25 13:43:51
http://reply.papertrans.cn/32/3177/317651/317651_23.png
贪婪性
发表于 2025-3-25 19:14:36
Entropy Methods for the Boltzmann Equationtion in the literature . Their importance stems from the fact that many physical phenomena related to oscillation theory are described by dynamic elastic models. Propagation of waves, oscillations and vibrations of membranes, plates, shells, etc. are governed by nonline
Nonporous
发表于 2025-3-25 22:40:47
Extensions and Related Results,r par exemple Agmon-Douglis-Nirenberg , pour les ouverts réguliers, Grisvard , Dauge et Kondratiev pour les ouverts à points singuliers. On montre que la solution variationnelle (lorsqu’elle existe) s’écrit sous forme où . a la régularité optimale .. (.) et .. s’écrit explicitemen
明确
发表于 2025-3-26 02:32:01
http://reply.papertrans.cn/32/3177/317651/317651_26.png
flavonoids
发表于 2025-3-26 05:57:48
http://reply.papertrans.cn/32/3177/317651/317651_27.png
GRAVE
发表于 2025-3-26 12:05:24
Entropy and the Tao of Countingork of strongly continuous operator semigroups and their generalizations. The Hille-Yosida type theorems settle the question of well-posedness to a great extend, many perturbation and approximation results have been established, and for a large class of problems the asymptotic behaviour can be studi
flaunt
发表于 2025-3-26 14:49:14
http://reply.papertrans.cn/32/3177/317651/317651_29.png
Gratulate
发表于 2025-3-26 19:17:47
N. B. Harmancioglu,N. Alpaslan,V. P. Singhoverned by the following state equation where . and . are given linear (differential) operators, while . and ..,.. stand for the temperature and the memory functions. Moreover, function α —. — satisfies 0 ≤ α(.) < . for any . ∈ (0,T).