notable 发表于 2025-3-21 16:31:20
书目名称Etale Cohomology and the Weil Conjecture影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0315837<br><br> <br><br>书目名称Etale Cohomology and the Weil Conjecture读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0315837<br><br> <br><br>巫婆 发表于 2025-3-21 22:55:32
http://reply.papertrans.cn/32/3159/315837/315837_2.pngaltruism 发表于 2025-3-22 02:52:47
Schlussbetrachtuog und Ausblick,The aim of this book is to develop Grothendieck’s etale cohomology theory of algebraic varieties as far as necessary and then to present Deligne’s proof of the Weil conjecture using this cohomology.Gnrh670 发表于 2025-3-22 07:37:39
http://reply.papertrans.cn/32/3159/315837/315837_4.pngBROW 发表于 2025-3-22 09:40:55
MartinReckenfelderbäumer,ChristianArnoldThe goal of this chapter is to prove the rationality of the Weil ζ-function of an algebraic variety over a finite field, or more generally of the .-series for constructible sheaves (Theorem 4.4). Following Grothendieck, we will derive the rationality from a fixed point formula of Lefschetz type for the Frobenius morphism (Proposition 4.2).Ferritin 发表于 2025-3-22 16:22:44
http://reply.papertrans.cn/32/3159/315837/315837_6.pngFerritin 发表于 2025-3-22 20:39:26
http://reply.papertrans.cn/32/3159/315837/315837_7.png字谜游戏 发表于 2025-3-22 22:23:45
http://reply.papertrans.cn/32/3159/315837/315837_8.png恸哭 发表于 2025-3-23 05:04:48
The Essentials of Etale Cohomology Theory,We start this chapter with an example, due to J-P. Serre, that illuminates some of the difficulties in constructing a Weil cohomology.Stable-Angina 发表于 2025-3-23 08:44:26
,Rationality of Weil ζ-Functions,The goal of this chapter is to prove the rationality of the Weil ζ-function of an algebraic variety over a finite field, or more generally of the .-series for constructible sheaves (Theorem 4.4). Following Grothendieck, we will derive the rationality from a fixed point formula of Lefschetz type for the Frobenius morphism (Proposition 4.2).