CT951 发表于 2025-3-21 18:53:35
书目名称Ergodic Theory and Dynamical Systems II影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0314491<br><br> <br><br>书目名称Ergodic Theory and Dynamical Systems II读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0314491<br><br> <br><br>Infantry 发表于 2025-3-21 20:54:37
http://reply.papertrans.cn/32/3145/314491/314491_2.png消息灵通 发表于 2025-3-22 04:28:19
The Globalization of Innovation, others, the property . (the set of non-wandering points is the closure of the set of periodic points) is C.-generic, i.e., holds for all homeomorphisms in some residual subset of the space Homeo(M) of all homeomorphisms of M to itself. This note points out and corrects a technical error in their prAXIOM 发表于 2025-3-22 05:00:31
http://reply.papertrans.cn/32/3145/314491/314491_4.png蛛丝 发表于 2025-3-22 10:53:01
Biotechnology Regulation and Tradenslates every vector v ∈ T.M. by the parallel translation along the unique geodesic determined by v at distance t. The frame flow ., acts in the space St.(M.) of orthonormal ordered k-frames w = {x, v.,..., v.}, where x ∈ M., v. ∈ T.M., (v., v.) = δ., 1 ≤ i, j ≤ k. The flow . translates every framewatertight, 发表于 2025-3-22 15:30:20
http://reply.papertrans.cn/32/3145/314491/314491_6.pngwatertight, 发表于 2025-3-22 19:18:09
http://reply.papertrans.cn/32/3145/314491/314491_7.pngExternalize 发表于 2025-3-23 00:33:40
Progress in Mathematicshttp://image.papertrans.cn/e/image/314491.jpg混合 发表于 2025-3-23 04:04:29
https://doi.org/10.1007/978-1-4899-2689-0differential equation; dynamical systems; ergodic theoryAblation 发表于 2025-3-23 09:09:53
http://reply.papertrans.cn/32/3145/314491/314491_10.png