injurious 发表于 2025-3-21 18:04:27

书目名称Ergodic Theory影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0314486<br><br>        <br><br>书目名称Ergodic Theory读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0314486<br><br>        <br><br>

Exclaim 发表于 2025-3-22 00:15:29

http://reply.papertrans.cn/32/3145/314486/314486_2.png

充满装饰 发表于 2025-3-22 02:48:14

George R. Pettit,Richard H. Ode,..., .. ∈ ?. Suppose . is a normalized measure on ?̃ and ? is the completion of ?̃ with respect to the measure .. In probability theory the triple (., ?, .) is said to be a . and the space (., ?) is the . of this process.

PSA-velocity 发表于 2025-3-22 07:24:44

https://doi.org/10.1007/978-981-19-0015-0orhood of a closed trajectory he proposed to consider the “return” map which arises on a transversal surface of codimension 1 to the closed trajectory: the transformation consists in following the trajectory starting at a given point of the surface until its next intersection with the surface.

pacific 发表于 2025-3-22 09:22:04

https://doi.org/10.1007/978-3-658-25577-0ity of their approximations by the periodic dynamical systems which are simplest from some point of view. We shall see that many properties of dynamical systems are intimately related to the character of their approximations.

谆谆教诲 发表于 2025-3-22 15:41:02

http://reply.papertrans.cn/32/3145/314486/314486_6.png

谆谆教诲 发表于 2025-3-22 20:39:48

Billiardsnce is equal to the angle of reflection.” Besides the intrinsic interest of the problem, systems of billiards are remarkable in view of the fact that they naturally appear in many important problems of physics.

灿烂 发表于 2025-3-22 23:53:14

Dynamical Systems in Probability Theory,..., .. ∈ ?. Suppose . is a normalized measure on ?̃ and ? is the completion of ?̃ with respect to the measure .. In probability theory the triple (., ?, .) is said to be a . and the space (., ?) is the . of this process.

秘密会议 发表于 2025-3-23 02:59:01

http://reply.papertrans.cn/32/3145/314486/314486_9.png

maladorit 发表于 2025-3-23 09:14:08

Approximations of Dynamical Systemsity of their approximations by the periodic dynamical systems which are simplest from some point of view. We shall see that many properties of dynamical systems are intimately related to the character of their approximations.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Ergodic Theory; I. P. Cornfeld,S. V. Fomin,Ya. G. Sinai Book 1982 Springer-Verlag New York Inc. 1982 Elementary Analysis.Ergodentheorie.Er