抱怨 发表于 2025-3-25 04:37:40

http://reply.papertrans.cn/32/3145/314481/314481_21.png

Anthem 发表于 2025-3-25 08:20:35

Pointwise Ergodic Theorems,We denote by . the space of all measurable .-valued functions with the seminorm . convergence in . is the same as convergence in ..

PALL 发表于 2025-3-25 11:46:44

http://reply.papertrans.cn/32/3145/314481/314481_23.png

名次后缀 发表于 2025-3-25 19:23:27

Bioresource and Stress Managementof all bounded sets in B; .. := {. : . ∈ . ∈ ., ..(.) > >0} (it is a direction with the following “downwards” order: .. < .. if .. ⊃ ..); M is the set of all Borel measures on .; . = ./. is a left homogeneous space; . is an invariant measure on .; (., ., .) is a probability space;ℝ̃.=ℝ.∪{+∞}; and ℝ̃=ℝ{-∞}∪{+∞}.

馆长 发表于 2025-3-25 22:13:22

http://reply.papertrans.cn/32/3145/314481/314481_25.png

临时抱佛脚 发表于 2025-3-26 00:29:34

http://reply.papertrans.cn/32/3145/314481/314481_26.png

FECK 发表于 2025-3-26 06:43:49

Ergodicity and Mixing, . being an arbitrary Banach space. If . ∈ ..(., ., .), M(.) = M(.∣.) is the mean of the function . with respect to . (see Subsect. 1.7.2). Let . be a probability measure on . E(.) = ..., . ∈ ..(., ., .).

暂时中止 发表于 2025-3-26 09:21:30

Ergodic Theorems for Homogeneous Random Measures,of all bounded sets in B; .. := {. : . ∈ . ∈ ., ..(.) > >0} (it is a direction with the following “downwards” order: .. < .. if .. ⊃ ..); M is the set of all Borel measures on .; . = ./. is a left homogeneous space; . is an invariant measure on .; (., ., .) is a probability space;ℝ̃.=ℝ.∪{+∞}; and ℝ̃=ℝ{-∞}∪{+∞}.

AMPLE 发表于 2025-3-26 13:42:52

http://reply.papertrans.cn/32/3145/314481/314481_29.png

musicologist 发表于 2025-3-26 18:58:35

http://reply.papertrans.cn/32/3145/314481/314481_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Ergodic Theorems for Group Actions; Informational and Th Arkady Tempelman Book 1992 Springer Science+Business Media Dordrecht 1992 Maxima.P