抱怨 发表于 2025-3-25 04:37:40
http://reply.papertrans.cn/32/3145/314481/314481_21.pngAnthem 发表于 2025-3-25 08:20:35
Pointwise Ergodic Theorems,We denote by . the space of all measurable .-valued functions with the seminorm . convergence in . is the same as convergence in ..PALL 发表于 2025-3-25 11:46:44
http://reply.papertrans.cn/32/3145/314481/314481_23.png名次后缀 发表于 2025-3-25 19:23:27
Bioresource and Stress Managementof all bounded sets in B; .. := {. : . ∈ . ∈ ., ..(.) > >0} (it is a direction with the following “downwards” order: .. < .. if .. ⊃ ..); M is the set of all Borel measures on .; . = ./. is a left homogeneous space; . is an invariant measure on .; (., ., .) is a probability space;ℝ̃.=ℝ.∪{+∞}; and ℝ̃=ℝ{-∞}∪{+∞}.馆长 发表于 2025-3-25 22:13:22
http://reply.papertrans.cn/32/3145/314481/314481_25.png临时抱佛脚 发表于 2025-3-26 00:29:34
http://reply.papertrans.cn/32/3145/314481/314481_26.pngFECK 发表于 2025-3-26 06:43:49
Ergodicity and Mixing, . being an arbitrary Banach space. If . ∈ ..(., ., .), M(.) = M(.∣.) is the mean of the function . with respect to . (see Subsect. 1.7.2). Let . be a probability measure on . E(.) = ..., . ∈ ..(., ., .).暂时中止 发表于 2025-3-26 09:21:30
Ergodic Theorems for Homogeneous Random Measures,of all bounded sets in B; .. := {. : . ∈ . ∈ ., ..(.) > >0} (it is a direction with the following “downwards” order: .. < .. if .. ⊃ ..); M is the set of all Borel measures on .; . = ./. is a left homogeneous space; . is an invariant measure on .; (., ., .) is a probability space;ℝ̃.=ℝ.∪{+∞}; and ℝ̃=ℝ{-∞}∪{+∞}.AMPLE 发表于 2025-3-26 13:42:52
http://reply.papertrans.cn/32/3145/314481/314481_29.pngmusicologist 发表于 2025-3-26 18:58:35
http://reply.papertrans.cn/32/3145/314481/314481_30.png