削木头 发表于 2025-3-21 19:37:57
书目名称Erdös Centennial影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0313621<br><br> <br><br>书目名称Erdös Centennial读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0313621<br><br> <br><br>万花筒 发表于 2025-3-21 22:21:02
Book 2013and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, t有法律效应 发表于 2025-3-22 04:16:11
Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions, II,cture has been proved by Erdős and Selfridge . The general case . ≥ 1 seems to be very hard, then there are only partial results; for survey papers on results obtained before 2006 we refer to Tijdeman – , Shorey and Tijdeman , Shorey –_and Győry .显微镜 发表于 2025-3-22 08:33:01
http://reply.papertrans.cn/32/3137/313621/313621_4.pngopprobrious 发表于 2025-3-22 08:57:50
Penousal Machado,Juan Romero,Gary Greenfield geometric viewpoint. We will discuss how well large graphs approximate continuous spaces such as the Euclidean space. Or how properties of Euclidean space such as scale invariance and rotational invariance can appear in large graphs.Acumen 发表于 2025-3-22 14:28:05
http://reply.papertrans.cn/32/3137/313621/313621_6.pngAcumen 发表于 2025-3-22 17:30:37
http://reply.papertrans.cn/32/3137/313621/313621_7.pngLipoprotein(A) 发表于 2025-3-23 00:09:00
http://reply.papertrans.cn/32/3137/313621/313621_8.png玩笑 发表于 2025-3-23 04:36:35
https://doi.org/10.1007/978-3-319-97436-1cture has been proved by Erdős and Selfridge . The general case . ≥ 1 seems to be very hard, then there are only partial results; for survey papers on results obtained before 2006 we refer to Tijdeman – , Shorey and Tijdeman , Shorey –_and Győry .红肿 发表于 2025-3-23 05:51:34
Reasoning for Resolving Customer Complaints,n the theory of geometric and topological graphs. What is the maximum number of edges that a geometric or topological graph of . vertices can have if it contains no forbidden subconfiguration of a certain type? We put special emphasis on open problems raised by Erdős or directly motivated by his work.