GUAFF 发表于 2025-3-21 18:31:02

书目名称Erdélyi–Kober Fractional Calculus影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0313617<br><br>        <br><br>书目名称Erdélyi–Kober Fractional Calculus读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0313617<br><br>        <br><br>

壮观的游行 发表于 2025-3-21 22:41:56

http://reply.papertrans.cn/32/3137/313617/313617_2.png

Spinous-Process 发表于 2025-3-22 03:55:15

,Erdélyi-Kober Fractional Integrals in the Real Matrix-Variante Case,rting the discussion, we will need some Jacobians of matrix transformations here. For results on Jacobians, see Mathai . For the real matrix-variate case, the determinant of . will be denoted by either det(.) or by |.|. When complex matrices are involved we will use the notation det(.) for determ

archetype 发表于 2025-3-22 07:15:48

http://reply.papertrans.cn/32/3137/313617/313617_4.png

restrain 发表于 2025-3-22 12:48:29

,Erdélyi-Kober Fractional Integrals Involving Many Real Matrices,for the ratio of .. to .. in the real scalar variable case, ., symmetric ratio, in the real . × . matrix-variate case. The corresponding density of .. and .. will be indicated by ..; we will use .. = ... for the product in the real scalar variable case and ., the symmetric product, in the real . × .

Fibroid 发表于 2025-3-22 14:26:29

,Erdélyi-Kober Fractional Integrals in the Complex Domain,e case. In the present chapter we will look into fractional calculus in the complex domain. Since we will be dealing with . × . Hermitian positive definite matrices, for . = 1 Hermitian positive definite means a real scalar positive variable. Hence we start with . ≥ 2. Fractional calculus of one rea

Fibroid 发表于 2025-3-22 20:48:13

http://reply.papertrans.cn/32/3137/313617/313617_7.png

作呕 发表于 2025-3-23 00:57:56

,Erdélyi-Kober Fractional Integrals in the Real Matrix-Variante Case,be written as ., denoting a matrix . in the complex domain as .. All matrices appearing in this chapter are . × . real positive definite unless stated otherwise. Some Jacobians of matrix transformations will be stated here as lemmas without proofs. For proofs and other details, see Mathai .

endure 发表于 2025-3-23 01:56:59

http://reply.papertrans.cn/32/3137/313617/313617_9.png

白杨 发表于 2025-3-23 07:49:23

http://reply.papertrans.cn/32/3137/313617/313617_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Erdélyi–Kober Fractional Calculus; From a Statistical P A. M. Mathai,H. J. Haubold Book 2018 The Author(s), under exclusive licence to Spri