OAK 发表于 2025-3-21 16:50:45

书目名称Equidistribution in Number Theory, An Introduction影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0313468<br><br>        <br><br>书目名称Equidistribution in Number Theory, An Introduction读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0313468<br><br>        <br><br>

elucidate 发表于 2025-3-21 23:09:16

1568-2609hold a school on “Equidistribution in number theory” to introduce junior researchers to these beautiful questions, and to determine whether di?erent approaches can in uence one another. There are far more good978-1-4020-5403-7978-1-4020-5404-4Series ISSN 1568-2609

anus928 发表于 2025-3-22 00:47:55

Equidistribution in Number Theory, An Introduction

逢迎春日 发表于 2025-3-22 06:02:03

Rahul Sharma,Pradip Sircar,Ram Bilas PachoriWe give a relatively easy proof of the Erdős-Kac theorem via computing moments. We show how this proof extends naturally in a sieve theory context, and how it leads to several related results in the literature.

PAEAN 发表于 2025-3-22 09:09:16

Mark Phillips B.Sc., LL.B., B.C.L.What follows is an expanded version of my lectures at the NATO School on Equidistribution. I have tried to keep the informal style of the lectures. In particular, I have sometimes oversimplified matters in order to convey the spirit of an argument.

做作 发表于 2025-3-22 14:10:18

http://reply.papertrans.cn/32/3135/313468/313468_6.png

做作 发表于 2025-3-22 19:58:43

Application of Data Mining Techniques,The most important analytic method for handling equidistribution questions about rational points on algebraic varieties is undoubtedly the Hardy– Littlewood circle method. There are a number of good texts available on the circle method, but the reader may particularly wish to study the books (Davenport, 2005) and (Vaughan, 1997).

光滑 发表于 2025-3-22 21:22:49

http://reply.papertrans.cn/32/3135/313468/313468_8.png

果仁 发表于 2025-3-23 02:59:50

http://reply.papertrans.cn/32/3135/313468/313468_9.png

Forage饲料 发表于 2025-3-23 09:15:52

Fracture Mechanics 1975 — An OverviewWe give examples of how classifying invariant probability measures for specific algebraic actions can be used to prove density and equidistribution results in number theory.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Equidistribution in Number Theory, An Introduction; Andrew Granville,Zeév Rudnick Conference proceedings 20071st edition Springer Science+