CYT 发表于 2025-3-23 22:40:04

https://doi.org/10.1007/978-3-031-01859-6We use classical Leray-Schauder techniques in order to derive the existence of periodic solutions of a generalized Liénard equation with delay.

TIA742 发表于 2025-3-24 03:37:02

http://reply.papertrans.cn/32/3135/313412/313412_15.png

多余 发表于 2025-3-24 07:06:15

Periodic solutions of generalized Lienard equations with delay,We use classical Leray-Schauder techniques in order to derive the existence of periodic solutions of a generalized Liénard equation with delay.

Afflict 发表于 2025-3-24 12:55:07

Oscillation and nonoscillation properties for second order nonlinear differential equations,We survey oscillation and nonoscillation criteria for the generalized Emden-Fowler differential equation y″+q(x)y.=0, q>0, γ>0 with particular emphasis on the duality between the sublinear and superlinear cases.

Adulate 发表于 2025-3-24 17:07:33

http://reply.papertrans.cn/32/3135/313412/313412_18.png

outrage 发表于 2025-3-24 22:45:40

https://doi.org/10.1007/978-3-658-10354-5f their results from the view of singularity theory and we will also indicate how this theory may be used to set up numerical methods for singular solutions such as bifurcation points or isolated points.

发表于 2025-3-25 02:25:20

https://doi.org/10.1007/978-3-7091-7924-6nces on these equations together with the physical phenomena where they arise. In particular we consider a generalized Burgers‘ equation and we sketch a method for solution in series by using the theory of Sobolevskij and Tanabe. Then we study the KdV equation with nonuniformity terms and we describ

chemical-peel 发表于 2025-3-25 05:52:55

http://reply.papertrans.cn/32/3135/313412/313412_21.png

喷油井 发表于 2025-3-25 08:14:45

Equadiff 82978-3-540-38678-0Series ISSN 0075-8434 Series E-ISSN 1617-9692

支形吊灯 发表于 2025-3-25 13:24:21

http://reply.papertrans.cn/32/3135/313412/313412_23.png
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Equadiff 82; Proceedings of the I H. W. Knobloch,Klaus Schmitt Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Boundary