可触知 发表于 2025-3-23 13:13:27
http://reply.papertrans.cn/31/3082/308194/308194_11.png发展 发表于 2025-3-23 15:41:08
http://reply.papertrans.cn/31/3082/308194/308194_12.png走路左晃右晃 发表于 2025-3-23 20:11:57
http://reply.papertrans.cn/31/3082/308194/308194_13.pngIndent 发表于 2025-3-24 00:59:00
http://reply.papertrans.cn/31/3082/308194/308194_14.pngMuscularis 发表于 2025-3-24 05:28:51
http://reply.papertrans.cn/31/3082/308194/308194_15.pnggospel 发表于 2025-3-24 10:02:28
Lihui Wang,Amos H. C. Ng,Kalyanmoy Debnt involving the adjacency matrix of the graph. The first proof is based on representing radial symmetric eigenfunctions on regular trees in terms of certain polynomials. The second proof is a consequence of the fact that the resolvent of the adjacency operator on regular trees is exponential.神圣将军 发表于 2025-3-24 14:02:14
https://doi.org/10.1007/978-1-4612-1544-8Hypergraph; Lattice; coding theory; cryptography; graph theory; graphs; number theory; combinatoricsSlit-Lamp 发表于 2025-3-24 18:27:30
http://reply.papertrans.cn/31/3082/308194/308194_18.pngExtemporize 发表于 2025-3-24 20:26:06
https://doi.org/10.1007/978-3-540-89528-2Our aim in this note is to point out that the complex numbers which parameterize the even Maass forms on the modular group .(2, .) are generalized Hausdorff, or fractal, dimensions of the set of irrationals, when the latter is appropriately viewed as a ..西瓜 发表于 2025-3-24 23:09:26
http://reply.papertrans.cn/31/3082/308194/308194_20.png