法令 发表于 2025-3-21 16:04:35

书目名称Elliptic Quantum Groups影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0307805<br><br>        <br><br>书目名称Elliptic Quantum Groups读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0307805<br><br>        <br><br>

Visual-Field 发表于 2025-3-21 20:18:22

http://reply.papertrans.cn/31/3079/307805/307805_2.png

CRATE 发表于 2025-3-22 00:32:47

Projections and Projection Matrices, (quantum) equivariant cohomology, and deformed .-algebras. A brief history of elliptic quantum groups is also given. There are some different formulations developed independently and sometimes dependently. They are classified by their generators and co-algebra structures into the following three :

Omniscient 发表于 2025-3-22 07:53:07

http://reply.papertrans.cn/31/3079/307805/307805_4.png

线 发表于 2025-3-22 09:54:40

http://reply.papertrans.cn/31/3079/307805/307805_5.png

移动 发表于 2025-3-22 15:51:28

http://reply.papertrans.cn/31/3079/307805/307805_6.png

移动 发表于 2025-3-22 19:50:14

Eugenius Kaszkurewicz,Amit Bhayaquantum group modules. In this chapter, we discuss the vertex operators of the .-modules. There are two types of them, type I and II, due to an asymmetry of the comultiplication with respect to the tensor components. By using the evaluation representation and the level-1 highest weight representatio

头盔 发表于 2025-3-23 00:26:02

Multi-field Coupling Numerical Simulation, Varchenko, Astérisque . (1997); Mimachi, Duke Math. J. ., 635–658 (1996); Matsuo, Comm. Math. Phys. ., 263–273 (1993)). Recently it has been shown (Gorbounov et al., J. Geom. Phys. ., 56–86 (2013); Rimányi et al., J. Geom. Phys. ., 81–119 (2015)) that they can be identified with the stable envelope

生来 发表于 2025-3-23 05:07:58

http://reply.papertrans.cn/31/3079/307805/307805_9.png

主动 发表于 2025-3-23 06:50:30

Marc Arnaudon,Frédéric Barbaresco,Le Yang elliptic .-KZ equation. A key to this is a cyclic property of trace and the exchange relation of the vertex operators. Evaluating the trace explicitly we also give an elliptic hypergeometric integral solution to the equation (Konno, J. Integrable Syst. ., 1–43 (2017)).
页: [1] 2 3 4 5
查看完整版本: Titlebook: Elliptic Quantum Groups; Representations and Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte