Tremor 发表于 2025-3-23 10:03:34

Differenzial- und Integralrechung,We first consider values of the .-function at quadratic imaginary numbers. We shall see that these values generate abelian extensions of quadratic fields.

seroma 发表于 2025-3-23 16:32:10

Differenzierbarkeit und AbleitungenLet . be the modular function field, studied in Chapter 6. We saw that . can be identified with the field of .-coordinates (or .-coordinates, . = Weber function) of division points of an elliptic curve . defined over .(.), having invariant .. Let . be an imaginary quadratic field, and let . ∈ . ⋂ ℌ

Explicate 发表于 2025-3-23 20:19:56

Diskrete Fourier-TransformationIn this section we give an example for the Shimura theorem concerning the quotient of automorphic functions.

和平主义者 发表于 2025-3-23 22:39:58

http://reply.papertrans.cn/31/3078/307791/307791_14.png

懦夫 发表于 2025-3-24 03:41:59

http://reply.papertrans.cn/31/3078/307791/307791_15.png

EVADE 发表于 2025-3-24 10:26:38

http://reply.papertrans.cn/31/3078/307791/307791_16.png

CANON 发表于 2025-3-24 13:16:43

Elliptic FunctionsBy a . in the complex plane . we shall mean a subgroup which is free of dimension 2 over ., and which generates . over the reals. If ω., ω. is a basis of a lattice . over ., then we also write . = [ω., ω.].

易于交谈 发表于 2025-3-24 14:56:39

http://reply.papertrans.cn/31/3078/307791/307791_18.png

巨硕 发表于 2025-3-24 22:39:43

The Modular FunctionBy . we mean the group of 2 x 2 matrices with determinant 1. We write . (.) for those elements of . having coefficients in a ring .. In practice, the ring . will be ., ., .. We call . (.) the ..

lobster 发表于 2025-3-25 00:14:58

http://reply.papertrans.cn/31/3078/307791/307791_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Elliptic Functions; Serge Lang Textbook 1987Latest edition Springer-Verlag New York Inc. 1987 Modular form.complex analysis.elliptic funct