CLIP 发表于 2025-3-21 16:06:30
书目名称Elliptic Differential Operators and Spectral Analysis影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0307786<br><br> <br><br>书目名称Elliptic Differential Operators and Spectral Analysis读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0307786<br><br> <br><br>instate 发表于 2025-3-21 20:23:40
Elliptic Differential Operators and Spectral AnalysisEnteropathic 发表于 2025-3-22 04:02:05
1439-7382 lysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations.The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators..978-3-030-02125-2Series ISSN 1439-7382 Series E-ISSN 2196-9922BUST 发表于 2025-3-22 07:26:57
Zahlensysteme, Ungleichungen, Potenzenk solution of the Dirichlet problem. Returning to the Laplace operator, its Dirichlet eigenvalues are considered: Courant’s min-max pronciple is proved together with the analyticity of eigenvectors and the Faber-Krahn inequality for the first eigenvalue. There is a brief discussion of spectral independence.deviate 发表于 2025-3-22 10:13:47
https://doi.org/10.1007/978-3-662-58702-7Vishik-Birman theory concerning the positive self-adjoint extensions of positive symmetric operators and the extension by Grubb of the theory to adjoint pairs of closed operators. Corresponding results, due to Arlinski and his collaborators, concerning the .-sectorial extensions of sectorial operators are given.misshapen 发表于 2025-3-22 13:46:41
Elliptic Operators of Arbitrary Order,k solution of the Dirichlet problem. Returning to the Laplace operator, its Dirichlet eigenvalues are considered: Courant’s min-max pronciple is proved together with the analyticity of eigenvectors and the Faber-Krahn inequality for the first eigenvalue. There is a brief discussion of spectral independence.misshapen 发表于 2025-3-22 21:04:12
Operators and Quadratic Forms in Hilbert Space,Vishik-Birman theory concerning the positive self-adjoint extensions of positive symmetric operators and the extension by Grubb of the theory to adjoint pairs of closed operators. Corresponding results, due to Arlinski and his collaborators, concerning the .-sectorial extensions of sectorial operators are given.整顿 发表于 2025-3-22 23:04:12
http://reply.papertrans.cn/31/3078/307786/307786_8.pngAgility 发表于 2025-3-23 04:02:58
http://reply.papertrans.cn/31/3078/307786/307786_9.png证实 发表于 2025-3-23 07:56:22
Springer Monographs in Mathematicshttp://image.papertrans.cn/e/image/307786.jpg