Malinger 发表于 2025-3-21 18:19:53

书目名称Elliptic Curves, Modular Forms and Iwasawa Theory影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0307783<br><br>        <br><br>书目名称Elliptic Curves, Modular Forms and Iwasawa Theory读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0307783<br><br>        <br><br>

REIGN 发表于 2025-3-21 23:58:34

http://reply.papertrans.cn/31/3078/307783/307783_2.png

GIBE 发表于 2025-3-22 03:06:43

http://reply.papertrans.cn/31/3078/307783/307783_3.png

偏离 发表于 2025-3-22 05:49:29

http://reply.papertrans.cn/31/3078/307783/307783_4.png

exostosis 发表于 2025-3-22 10:46:20

http://reply.papertrans.cn/31/3078/307783/307783_5.png

Conscientious 发表于 2025-3-22 16:20:57

https://doi.org/10.1007/978-3-642-72302-5 étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.

Conscientious 发表于 2025-3-22 18:59:30

Partielle Differentialgleichungen,-torsion points on .. We determine all cases when the Galois cohomology group . does not vanish, and investigate the analogous question for . when .. We include an application to the verification of certain cases of the Birch and Swinnerton-Dyer conjecture, and another application to the Grunwald–Wa

交响乐 发表于 2025-3-23 01:01:17

,Funktionen einer Veränderlichen, terms of the .-operator acting on the attached etale .-module .(.). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers . over finite extensions . of . by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and .-modules and e

继承人 发表于 2025-3-23 03:01:09

https://doi.org/10.1007/978-3-662-28432-2olute Galois group of a number field for which the residual representation . comes from a modular form then so does .. This theorem has numerous hypotheses; a crucial one is that the image of . must be “big,” a technical condition on subgroups of .. In this paper we investigate this condition in com

arthroscopy 发表于 2025-3-23 08:54:53

Metrische und Topologische Fragen,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
页: [1] 2 3 4 5
查看完整版本: Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin