Julienne 发表于 2025-3-21 16:41:35
书目名称Elliptic Curves影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0307774<br><br> <br><br>书目名称Elliptic Curves读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0307774<br><br> <br><br>Oafishness 发表于 2025-3-21 22:50:20
http://reply.papertrans.cn/31/3078/307774/307774_2.pngFELON 发表于 2025-3-22 02:13:52
http://reply.papertrans.cn/31/3078/307774/307774_3.png灾祸 发表于 2025-3-22 06:17:14
http://reply.papertrans.cn/31/3078/307774/307774_4.pngStricture 发表于 2025-3-22 10:43:47
Division Points, given as cubic with rational coefficients, their coordinates are algebraic numbers, hence their algebraic interest. By taking suitable limits of groups of division points, some canonical p-adic spaces are attached to the curve, which, formally at least, are similar to the tangent space at the origicatagen 发表于 2025-3-22 15:41:25
http://reply.papertrans.cn/31/3078/307774/307774_6.pngcatagen 发表于 2025-3-22 18:04:48
http://reply.papertrans.cn/31/3078/307774/307774_7.pngWorking-Memory 发表于 2025-3-22 22:44:47
http://reply.papertrans.cn/31/3078/307774/307774_8.pngHEDGE 发表于 2025-3-23 04:32:30
Division Points,adratic field, we have proved in two ways that its invariant j(L) is an algebraic integer. The first one is the classical analytical one, whereas the second one (Tate) uses division points through ℓ-adic representations of Tate’s curves.山间窄路 发表于 2025-3-23 07:53:49
Division Points,adratic field, we have proved in two ways that its invariant j(L) is an algebraic integer. The first one is the classical analytical one, whereas the second one (Tate) uses division points through ℓ-adic representations of Tate’s curves.