DIGN 发表于 2025-3-21 19:18:45
书目名称Elliptic Boundary Problems for Dirac Operators影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0307765<br><br> <br><br>书目名称Elliptic Boundary Problems for Dirac Operators读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0307765<br><br> <br><br>除草剂 发表于 2025-3-21 23:16:58
of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.978-1-4612-6713-3978-1-4612-0337-7EPT 发表于 2025-3-22 01:15:33
Book 1993e aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manif打击 发表于 2025-3-22 06:01:58
http://reply.papertrans.cn/31/3078/307765/307765_4.pnglactic 发表于 2025-3-22 10:53:55
Mathematics: Theory & Applicationshttp://image.papertrans.cn/e/image/307765.jpgmyelography 发表于 2025-3-22 14:36:47
https://doi.org/10.1007/978-1-4612-0337-7Manifold; Sobolev space; algebra; equation; theorem; partial differential equations; matrix theory; ordinarmyelography 发表于 2025-3-22 17:37:44
Mathematical Models for Suspension BridgesWe define a canonical first order differential operator . : ..(.;.) → ..(.;.), called the Diras operator of .. Next we find the principal symbols of . and .. and show that . is formally self-adjoint with an explicit Green’s formula.短程旅游 发表于 2025-3-22 23:39:42
http://reply.papertrans.cn/31/3078/307765/307765_8.pngfringe 发表于 2025-3-23 01:48:14
Yurii V. Kistenev,Alexander V. ShapovalovWe consider a spin manifold with a spin structure on its tangent bundle, and a spinor bundle endowed with its canonical connection. We formulate the Lichnerowicz vanishing theorem.散开 发表于 2025-3-23 08:56:12
Discovery of the Number Sequence,We emphasize the decomposition of a .ℓ(.)-bundle . = .. ⊕ .. and the related splitting of Dirac operators. It is illuminating to treat the signature operator and other geometrically defined operators in this context.