用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of the Theory of Representations; Aleksandr A. Kirillov Book 1976 Springer-Verlag Berlin Heidelberg 1976 Darstellung.Group repres

[复制链接]
楼主: 反抗日本
发表于 2025-3-23 21:56:51 | 显示全部楼层
The Method of Orbitsclosely connected with a certain special finite-dimensional representation of this group. This representation acts in the dual space {{g}}* of the Lie algebra {{g}} of the group under study. We will call it a [[co-adjoint]] or briefly a [[K-representation]]
发表于 2025-3-24 00:01:20 | 显示全部楼层
发表于 2025-3-24 05:36:30 | 显示全部楼层
发表于 2025-3-24 08:07:39 | 显示全部楼层
发表于 2025-3-24 11:07:42 | 显示全部楼层
https://doi.org/10.1007/978-1-349-02154-3Proofs of the facts given in this section, along with more information, can be found in the textbook of S. Lang [39] and also in the treatise of N. Bourbaki [6].
发表于 2025-3-24 15:18:40 | 显示全部楼层
发表于 2025-3-24 22:43:08 | 显示全部楼层
https://doi.org/10.1007/978-981-13-3372-9Sets with structure locally like Euclidean spaces are called manifolds. This property enables us to introduce local systems of coordinates on manifolds and to employ the apparatus of mathematical analysis. A precise definition of manifold follows.
发表于 2025-3-25 01:34:36 | 显示全部楼层
https://doi.org/10.1007/978-3-031-57683-6A set G is called a Lie group if it is a topological group and a smooth manifold for which the mapping ., given by φ(.)=. is smooth.
发表于 2025-3-25 07:09:36 | 显示全部楼层
Jaspreet Kaur,Manishi Mukesh,Akshay AnandWe have already stated . that the term “representation” in the wide sense means a homomorphism of the group . into the group of one-to-one mappings of a certain set . onto itself.,A representation . is called . if . is a linear space and the mappings . are linear operators.
发表于 2025-3-25 11:13:09 | 显示全部楼层
https://doi.org/10.1007/978-3-319-07944-8One of the principal problems of the theory of representations is the problem of decomposing representations of a group . into the simplest possible components.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-16 11:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表