佛刊
发表于 2025-3-27 00:54:52
Bifurcation of Periodic Solutions in the General Case,loses stability at a simple, complex-valued eigenvalue. The mathematical analysis is framed in terms of the autonomous evolution equation (VI.45) reduced to local form and the analysis of the loss of stability of the solution . = 0 given in §VII.9 is valid for the present problem.
resuscitation
发表于 2025-3-27 01:06:14
http://reply.papertrans.cn/31/3075/307422/307422_32.png
你不公正
发表于 2025-3-27 09:11:36
Introduction,, steady solutions, time-periodic solutions, and quasi-periodic solutions. The purpose of this book is to teach the theory of bifurcation of equilibrium solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broadest audience of potentially in
congenial
发表于 2025-3-27 10:40:08
http://reply.papertrans.cn/31/3075/307422/307422_34.png
FLORA
发表于 2025-3-27 17:23:44
http://reply.papertrans.cn/31/3075/307422/307422_35.png
恶意
发表于 2025-3-27 21:00:29
http://reply.papertrans.cn/31/3075/307422/307422_36.png
逢迎春日
发表于 2025-3-27 23:29:22
http://reply.papertrans.cn/31/3075/307422/307422_37.png
减去
发表于 2025-3-28 04:04:29
http://reply.papertrans.cn/31/3075/307422/307422_38.png
fabricate
发表于 2025-3-28 07:58:29
http://reply.papertrans.cn/31/3075/307422/307422_39.png
Pseudoephedrine
发表于 2025-3-28 12:27:55
http://reply.papertrans.cn/31/3075/307422/307422_40.png