antihistamine
发表于 2025-3-21 18:15:13
书目名称Elementary Dirichlet Series and Modular Forms影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0307372<br><br> <br><br>书目名称Elementary Dirichlet Series and Modular Forms读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0307372<br><br> <br><br>
Invigorate
发表于 2025-3-21 23:43:56
1439-7382 ition.Self-contained, and suitable for use in a classroom seA book on any mathematical subject above textbook level is not of much value unless it contains new ideas and new perspectives. Also, the author may be encouraged to include new results, provided that they help the reader gain newinsightsan
Truculent
发表于 2025-3-22 01:18:05
http://reply.papertrans.cn/31/3074/307372/307372_3.png
Flounder
发表于 2025-3-22 05:34:24
http://reply.papertrans.cn/31/3074/307372/307372_4.png
行为
发表于 2025-3-22 09:37:15
http://reply.papertrans.cn/31/3074/307372/307372_5.png
EPT
发表于 2025-3-22 13:20:21
http://reply.papertrans.cn/31/3074/307372/307372_6.png
EPT
发表于 2025-3-22 18:42:42
https://doi.org/10.1007/978-3-658-30834-6To define another type of Dirichlet series similar to ., we take an imaginary quadratic field . embedded in C. We then denote by r the maximal order of . and by . the restriction of complex conjugation to
误传
发表于 2025-3-22 22:40:59
http://reply.papertrans.cn/31/3074/307372/307372_8.png
Stricture
发表于 2025-3-23 04:32:58
The Case of Imaginary Quadratic Fields and Nearly Holomorphic Modular Forms,To define another type of Dirichlet series similar to ., we take an imaginary quadratic field . embedded in C. We then denote by r the maximal order of . and by . the restriction of complex conjugation to
nominal
发表于 2025-3-23 09:02:44
978-1-4419-2478-0Springer-Verlag New York 2007