magnify 发表于 2025-3-21 17:44:01

书目名称Electronic States in Crystals of Finite Size影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0306404<br><br>        <br><br>书目名称Electronic States in Crystals of Finite Size读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0306404<br><br>        <br><br>

GRAIN 发表于 2025-3-22 00:15:50

Mathematical Basisls were obtained through the analysis of one-dimensional crystals [.–.]. Among the most well-known examples are the Kronig-Penney model [.], Kramers’ general analysis of the band structure of one-dimensional infinite crystals [.], Tamm’s surface states [.], and so forth. In order to have a clear und

Benzodiazepines 发表于 2025-3-22 01:24:47

Surface States in One-Dimensional Semi-infinite Crystalsat the termination of the periodic potential due to the existence of a barrier at the boundary in a one-dimensional semi-infinite crystal can cause localized surface states to exist in band gaps below the barrier height [.]. Now after more than 70 years, the investigations of the properties of surfa

Fecundity 发表于 2025-3-22 06:45:36

Electronic States in Ideal One-Dimensional Crystals of Finite Lengthntial period and . is a positive integer.. On the basis of the theory of differential equations in Chapter 2, exact and general results on the electronic states in such an ideal finite crystal can be analytically obtained. We will see that in obtaining the results in this chapter, it is the understa

Meditative 发表于 2025-3-22 09:44:56

http://reply.papertrans.cn/31/3065/306404/306404_5.png

heartburn 发表于 2025-3-22 16:36:58

Electronic States in Ideal Quantum Wireswhich can be considered as the electronic states in a quantum film discussed in Chapter 5 further confined in one more direction. In particular, we are interested in those simple cases where the two primitive lattice vectors .1 and .2 in the film plane are perpendicular to each other. By using an ap

heartburn 发表于 2025-3-22 17:23:55

http://reply.papertrans.cn/31/3065/306404/306404_7.png

Diverticulitis 发表于 2025-3-23 00:23:03

Concluding Remarkss, based on a theory of differential equations approach. By ideal, it is assumed that (i) the potential . inside the low-dimensional system or the finite crystal is the same as in a crystal with translational invariance and (ii) the electronic states are completely confined in the limited size of th

闪光东本 发表于 2025-3-23 02:45:12

http://reply.papertrans.cn/31/3065/306404/306404_9.png

共栖 发表于 2025-3-23 07:48:10

https://doi.org/10.1007/978-3-658-05466-3ls were obtained through the analysis of one-dimensional crystals [.–.]. Among the most well-known examples are the Kronig-Penney model [.], Kramers’ general analysis of the band structure of one-dimensional infinite crystals [.], Tamm’s surface states [.], and so forth. In order to have a clear und
页: [1] 2 3 4
查看完整版本: Titlebook: Electronic States in Crystals of Finite Size; Quantum confinement Shang Yuan Ren Book 20061st edition Springer-Verlag New York 2006 Finite