闸门
发表于 2025-3-21 19:56:15
书目名称Eisenstein Series and Applications影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0305492<br><br> <br><br>书目名称Eisenstein Series and Applications读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0305492<br><br> <br><br>
GAVEL
发表于 2025-3-21 21:23:26
http://reply.papertrans.cn/31/3055/305492/305492_2.png
Jogging
发表于 2025-3-22 01:04:31
http://reply.papertrans.cn/31/3055/305492/305492_3.png
审问,审讯
发表于 2025-3-22 08:13:14
http://reply.papertrans.cn/31/3055/305492/305492_4.png
连词
发表于 2025-3-22 10:45:01
http://reply.papertrans.cn/31/3055/305492/305492_5.png
agonist
发表于 2025-3-22 14:08:50
http://reply.papertrans.cn/31/3055/305492/305492_6.png
agonist
发表于 2025-3-22 20:42:01
Residues of Eisenstein Series and Related Problems,. The relation between these two methods is the general conjecture which relates periods on the cuspidal data to the existence of poles or the special values of .-functions attached to the cuspidal data.
Mindfulness
发表于 2025-3-22 21:58:37
0743-1643 common structural properties of Eisenstein series as applied.Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bring
FECT
发表于 2025-3-23 05:20:17
https://doi.org/10.1007/978-3-531-91129-8. The relation between these two methods is the general conjecture which relates periods on the cuspidal data to the existence of poles or the special values of .-functions attached to the cuspidal data.
含糊其辞
发表于 2025-3-23 08:54:12
http://reply.papertrans.cn/31/3055/305492/305492_10.png