neuron 发表于 2025-3-23 13:02:52

http://reply.papertrans.cn/31/3054/305346/305346_11.png

Maximize 发表于 2025-3-23 16:15:36

http://reply.papertrans.cn/31/3054/305346/305346_12.png

kyphoplasty 发表于 2025-3-23 20:40:54

http://reply.papertrans.cn/31/3054/305346/305346_13.png

COKE 发表于 2025-3-24 01:06:51

https://doi.org/10.1007/978-3-658-23226-9Which compact manifolds do admit an Einstein metric? Except in dimension 2 (see Section B of this chapter), a complete answer to this question seems out of reach today. At least, in dimensions 3 and 4, we can single out a few manifolds which definitely . admit any Einstein metric.

elucidate 发表于 2025-3-24 04:12:39

http://reply.papertrans.cn/31/3054/305346/305346_15.png

先锋派 发表于 2025-3-24 08:26:12

http://reply.papertrans.cn/31/3054/305346/305346_16.png

勉强 发表于 2025-3-24 11:21:03

http://reply.papertrans.cn/31/3054/305346/305346_17.png

令人苦恼 发表于 2025-3-24 17:58:22

https://doi.org/10.1007/978-3-662-34560-3Since the main emphasis of the boook is on compact spaces, this chapter on non-compact examples is only meant as a report.

browbeat 发表于 2025-3-24 19:01:05

http://reply.papertrans.cn/31/3054/305346/305346_19.png

完成 发表于 2025-3-25 03:08:47

http://reply.papertrans.cn/31/3054/305346/305346_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top