找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Economists‘ Mathematical Manual; Knut Sydsæter,Arne Strøm,Peter Berck Textbook 2005Latest edition Springer-Verlag Berlin Heidelberg 2005 S

[复制链接]
楼主: Agitated
发表于 2025-3-24 05:02:52 | 显示全部楼层
发表于 2025-3-24 07:52:44 | 显示全部楼层
Volker Bach,Petra Vogler,Hubert ÖsterleDefinition of (global) maximum (minimum) of a function of . variables. As collective names, we use . points and values, or . points and values. Used to convert minimization problems to maximization problems.
发表于 2025-3-24 14:32:07 | 显示全部楼层
发表于 2025-3-24 18:17:46 | 显示全部楼层
https://doi.org/10.1007/978-94-017-4358-7The .. A necessary condition for the solution of (16.1). An alternative form of the Euler equation. The .. A necessary condition for the solution of (16.1). Sufficient conditions for the solution of (16.1). . Adding condition (16.5) gives sufficient conditions.
发表于 2025-3-24 22:59:42 | 显示全部楼层
The Law Is My Friend, Philosopher and Guide,Definition of an . sequence. Boundedness conditions. . and . are given numbers. The . obtained from period . and onwards, given that the state vector is . at . = .. The . of problem (17.8). Properties of the value function, assuming that at least one of the boundedness conditions in (17.10) is satisfied.
发表于 2025-3-25 02:23:13 | 显示全部楼层
https://doi.org/10.1007/978-3-030-03347-7Definition of a linear combination of vectors. Definition of linear dependence and independence. A characterization of linear independence for . vectors in ℝ.. (See (19.23) for the definition of rank.) A characterization of linear independence for . vectors in ℝ.. (A special case of (18.4).)
发表于 2025-3-25 06:53:03 | 显示全部楼层
发表于 2025-3-25 09:04:37 | 显示全部楼层
Set Theory. Relations. Functions,Let . be a relation from . to . and . a relation from . to .. Then we define the . . ○ . of . and . as the set of all (., .) in . × . such that there is an element . in . with . and .. . ○ . is a relation from . to ..
发表于 2025-3-25 12:15:31 | 显示全部楼层
Equations. Functions of one variable. Complex numbers,Let . be the number of changes of sign in the sequence of coefficients ., ., … , ., . in (2.8). The number of positive real roots of .(.) = 0, counting the multiplicities of the roots, is . or . minus a positive even number. If . = 1, the equation has exactly one positive real root.
发表于 2025-3-25 17:34:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 12:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表