T-cell 发表于 2025-3-21 17:15:10

书目名称Dick de Jongh on Intuitionistic and Provability Logics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0284621<br><br>        <br><br>书目名称Dick de Jongh on Intuitionistic and Provability Logics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0284621<br><br>        <br><br>

Stable-Angina 发表于 2025-3-21 22:18:02

The ,-Provability Logic of HA Revisited,variables. Also the .-provability logic of the Heyting Arithmetic ., is characterized by (Ardeshir & Mojtahedi, .) as . (for definition of ., see Sect. .). In this paper, we find some translation ., which embeds . in ., the intuitionistic counterpart of ..

结束 发表于 2025-3-22 01:06:41

An Overview of Verbrugge Semantics, a.k.a. Generalised Veltman Semantics,re endowed with relational semantics à la Kripke: Veltman semantics. For certain applications though, this semantics is not fine-grained enough. Back in 1992, in the research group of de Jongh, the notion of . emerged to obtain certain non-derivability results as was first presented by Verbrugge (.)

渐变 发表于 2025-3-22 05:54:58

http://reply.papertrans.cn/29/2847/284621/284621_4.png

Thyroxine 发表于 2025-3-22 12:08:03

http://reply.papertrans.cn/29/2847/284621/284621_5.png

Incorruptible 发表于 2025-3-22 14:36:55

Intermediate Logics in the Setting of Team Semantics,diate logics in the team semantics setting. We do this by modifying . with axioms written with two different versions of disjunction in the logic, a local one and global one. We prove a characterization theorem in the first approach and we introduce a generalized team semantics in the second one.

Incorruptible 发表于 2025-3-22 17:17:58

Well Partial Orders,itting many other important results. Starting with recalling basic facts from De Jongh and Parikh’s fundamental paper on maximal order types we survey some related key results by Diana Schmidt. Then we discuss generalized trees, their embeddability relation and their associated maximal order types.

Prognosis 发表于 2025-3-22 22:17:15

Learning to Act and Observe in Partially Observable Domains,hat it can observe and how its actions affect the environment. The agent can learn about this domain from experience gathered by taking actions in the domain and observing their results. We present learning algorithms capable of learning as much as possible (in a well-defined sense) both about what

污秽 发表于 2025-3-23 04:38:57

Axiomatizing Origami Planes,ctions. We isolate the fragments corresponding to natural classes of origami constructions such as Pythagorean, Euclidean, and full origami constructions. The set of origami constructible points for each of the classes of constructions provides the minimal model of the corresponding set of logical a

Frequency-Range 发表于 2025-3-23 07:33:10

https://doi.org/10.1007/978-3-031-47921-2Mathematical Logic; Intuitionistic Logic; Provability Logic; Theory of Well-partial Orders; Formal Learn
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Dick de Jongh on Intuitionistic and Provability Logics; Nick Bezhanishvili,Rosalie Iemhoff,Fan Yang Book 2024 The Editor(s) (if applicable