铺子
发表于 2025-3-30 08:52:52
An Introduction to Geometric Gibbs Theory,tate. The deformation of a Gibbs state becomes an important subject in these areas. An appropriate metric on the space of underlying dynamical systems is going to be very helpful in the study of deformation. The Teichmüller metric becomes a natural choice. The Teichmüller metric, just like the hyper
Lethargic
发表于 2025-3-30 13:19:14
http://reply.papertrans.cn/29/2843/284224/284224_52.png
变化
发表于 2025-3-30 17:15:43
http://reply.papertrans.cn/29/2843/284224/284224_53.png
overwrought
发表于 2025-3-30 23:08:03
http://reply.papertrans.cn/29/2843/284224/284224_54.png
Mucosa
发表于 2025-3-31 04:35:48
http://reply.papertrans.cn/29/2843/284224/284224_55.png
MAZE
发表于 2025-3-31 05:36:15
Jean-Pierre Bourguignon,Rolf Jeltsch,Marcelo VianaIncludes supplementary material:
努力赶上
发表于 2025-3-31 12:29:54
http://reply.papertrans.cn/29/2843/284224/284224_57.png
anniversary
发表于 2025-3-31 14:31:56
http://reply.papertrans.cn/29/2843/284224/284224_58.png
沉默
发表于 2025-3-31 20:41:58
http://reply.papertrans.cn/29/2843/284224/284224_59.png
florid
发表于 2025-3-31 23:19:48
https://doi.org/10.1007/978-1-4757-2210-9e integer matrices) and pairs of semi-standard Young tableaux (SSYTs). One of its applications, in the theory of Schur polynomials, is a bijective proof of the well known Cauchy identity. An interesting analogue of this bijection was given by Mason, where SSYTs are replaced by semi-skyline augmented