vein220 发表于 2025-3-21 19:02:41

书目名称Dynamics of One-Dimensional Maps影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0284146<br><br>        <br><br>书目名称Dynamics of One-Dimensional Maps读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0284146<br><br>        <br><br>

audiologist 发表于 2025-3-21 20:41:19

http://reply.papertrans.cn/29/2842/284146/284146_2.png

commensurate 发表于 2025-3-22 01:23:49

Mathematics and Its Applicationshttp://image.papertrans.cn/e/image/284146.jpg

揉杂 发表于 2025-3-22 05:47:41

https://doi.org/10.1007/978-94-015-8897-3DEX; Invariant; Volume; behavior; boundary element method; dynamical systems; eXist; nonlinear dynamics; onl

花费 发表于 2025-3-22 08:52:56

978-90-481-4846-2Springer Science+Business Media Dordrecht 1997

PET-scan 发表于 2025-3-22 16:04:15

Fundamental Concepts of the Theory of Dynamical Systems. Typical Examples and Some Results, or metric). If . belongs to ℝ or ℝ., then a dynamical system is sometimes called a flow and if . belongs to ℤ or ℤ., then this dynamical system is called a cascade. These names are connected with the fact that, under the action of .., the points of . “begin to move” ..., and the space “splits” into the trajectories of this motion.

PET-scan 发表于 2025-3-22 17:49:30

http://reply.papertrans.cn/29/2842/284146/284146_7.png

鞠躬 发表于 2025-3-23 00:09:00

http://reply.papertrans.cn/29/2842/284146/284146_8.png

悲观 发表于 2025-3-23 02:48:27

Pamela J. Stewart,Andrew J. Strathernive location of points of a single trajectory on the interval . may contain much information about the dynamical system as a whole. Clearly, this is explained by the fact that the phase space (the interval .) is onedimensional. The points of a trajectory define a decomposition of the phase space, an

潜移默化 发表于 2025-3-23 07:09:11

d . if the interiors of .. are mutually disjoint and .(..) ⊂ .. for all . ∈{0, 1, ..., .- 1}. Denote by .., = ..(.) the set of cycles of intervals of period . of the map . which contain the critical point .. Suppose that, for some .≥ 1, the set ..(.) is not empty (it is clear that .. is not empty be
页: [1] 2 3 4 5
查看完整版本: Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997