Chronological 发表于 2025-3-26 23:55:15

Ketan S. Tatu,James T. Anderson an equilibrium of the system but can also be a (quasi-)periodic motion. The stability of equilibria is (for the hyperbolic case) determined by the eigenvalues of the local linearization of the system. The stability of periodic solutions, however, is determined by so-called ., which are eigenvalues

具体 发表于 2025-3-27 02:57:13

http://reply.papertrans.cn/29/2840/283947/283947_32.png

大骂 发表于 2025-3-27 07:38:38

http://reply.papertrans.cn/29/2840/283947/283947_33.png

pulse-pressure 发表于 2025-3-27 10:34:37

http://reply.papertrans.cn/29/2840/283947/283947_34.png

Adornment 发表于 2025-3-27 14:10:33

http://reply.papertrans.cn/29/2840/283947/283947_35.png

VOK 发表于 2025-3-27 18:48:28

http://reply.papertrans.cn/29/2840/283947/283947_36.png

COLON 发表于 2025-3-27 22:20:14

http://reply.papertrans.cn/29/2840/283947/283947_37.png

悲痛 发表于 2025-3-28 03:44:30

http://reply.papertrans.cn/29/2840/283947/283947_38.png

Wallow 发表于 2025-3-28 07:56:53

http://reply.papertrans.cn/29/2840/283947/283947_39.png

单片眼镜 发表于 2025-3-28 14:09:55

http://reply.papertrans.cn/29/2840/283947/283947_40.png
页: 1 2 3 [4] 5
查看完整版本: Titlebook: Dynamics and Bifurcations of Non-Smooth Mechanical Systems; Remco I. Leine,Henk Nijmeijer Book 2004 Springer-Verlag Berlin Heidelberg 2004