anthropologist 发表于 2025-3-23 13:05:23

,Glas und seine vielfältigen Anwendungen,A pair (.) consisting of a 2.-dimensional manifold . together with a closed 2-form . is called a . if the form . is nondegenerate, i.e. if .. = . ∧ · ... · . ≢ 0.

RUPT 发表于 2025-3-23 16:32:39

IntroductionA nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term ‘holonomic’ is due to Hertz and means ‘universal’, ‘integral’, ‘integrable’ (literally, . -entire, . - law). ‘Nonholonomic’ is therefore a synonym of ‘nonintegrable’.

avarice 发表于 2025-3-23 18:13:08

http://reply.papertrans.cn/29/2839/283871/283871_13.png

外科医生 发表于 2025-3-24 01:22:25

Integrable Systems and Finite-Dimensional Lie AlgebrasIn this survey we consider integrable systems whose construction makes use of root systems of simple (usually finite-dimensional) Lie algebras.

胶状 发表于 2025-3-24 02:58:11

http://reply.papertrans.cn/29/2839/283871/283871_15.png

compose 发表于 2025-3-24 06:46:24

http://reply.papertrans.cn/29/2839/283871/283871_16.png

bizarre 发表于 2025-3-24 14:35:02

http://reply.papertrans.cn/29/2839/283871/283871_17.png

itinerary 发表于 2025-3-24 15:02:44

Herz, Kreislauf und Hämodynamiknomic distribution. The solutions to this problem, the nonholonomic geodesics, satisfy the Euler-Lagrange equations of a conditional problem. They generate a nonholonomic geodesic flow defined on the mixed bundle which is the direct sum of the distribution and its annihilator in the cotangent bundle

folliculitis 发表于 2025-3-24 21:40:28

Intravenöse Anästhetika und Benzodiazepinet-invariant nonholonomic distribution. Our main subject is the study of the nonholonomic geodesic flow (NG-flow), more precisely, of the nonholonomic sphere, of the wave front (Section 1), and of the general dynamical properties of the flow (Section 2). The mixed bundle for Lie groups is the direct

火光在摇曳 发表于 2025-3-25 00:34:22

http://reply.papertrans.cn/29/2839/283871/283871_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Dynamical Systems VII; Integrable Systems N V. I. Arnol’d,S. P. Novikov Book 1994 Springer-Verlag Berlin Heidelberg 1994 Hamiltonian System