fatuity 发表于 2025-3-23 11:11:05

Experimental aspects of the period doubling scenario,

Ankylo- 发表于 2025-3-23 14:17:35

Strange attractors for differential delay equations,

汇总 发表于 2025-3-23 20:30:52

http://reply.papertrans.cn/29/2839/283851/283851_13.png

FLAGR 发表于 2025-3-23 22:20:19

http://reply.papertrans.cn/29/2839/283851/283851_14.png

employor 发表于 2025-3-24 03:19:39

Continuous bifurcation and dissipative structures associated with a soft mode recombination instabi

Pessary 发表于 2025-3-24 06:43:33

http://reply.papertrans.cn/29/2839/283851/283851_16.png

乏味 发表于 2025-3-24 13:01:08

Prologue Some ideas about strange attractors,oclinic and heteroclinic points. However, many questions are left open:.We strongly recommend to look for the geometric structure in physical or numerical experiments. It seems to us that without this knowledge one cannot get a really deep insight in the problem of S.A.

jumble 发表于 2025-3-24 16:39:11

http://reply.papertrans.cn/29/2839/283851/283851_18.png

纪念 发表于 2025-3-24 20:26:08

http://reply.papertrans.cn/29/2839/283851/283851_19.png

背信 发表于 2025-3-25 01:54:26

https://doi.org/10.1007/978-3-662-44268-5iffusive motion. While the period-doubling bifurcations have the universal asymptotic bifurcation rate δ=4.6692..., the tangent bifurcations present within the chaotic region do not follow this rate. We show that the tangent bifurcations giving rise to a fine structure of periodic windows have bifur
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Dynamical Systems and Chaos; Proceedings of the S Luis Garrido Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Chaos.Cha