颂扬本人 发表于 2025-3-25 03:42:36
http://reply.papertrans.cn/29/2838/283722/283722_21.pngVentilator 发表于 2025-3-25 09:59:48
http://reply.papertrans.cn/29/2838/283722/283722_22.pngprolate 发表于 2025-3-25 14:24:38
https://doi.org/10.1007/978-3-658-03708-6ch are presented accordingly in terms of respective conjugate spaces. These arrays of problems form a scale discussed in the present chapter. A similar situation arises in the problem of dynamic state estimation. In this section, we consider stationary systems.Curmudgeon 发表于 2025-3-25 17:29:41
http://reply.papertrans.cn/29/2838/283722/283722_24.pngWITH 发表于 2025-3-25 22:41:34
http://reply.papertrans.cn/29/2838/283722/283722_25.pngEstimable 发表于 2025-3-26 02:53:13
http://reply.papertrans.cn/29/2838/283722/283722_26.pngARENA 发表于 2025-3-26 05:40:51
Commitment: Wollen Sie wirklich?are assumed to be unknown but bounded by a given convex set. Once again the key element of the solution is the Principle of Optimality and its infinitesimal counterpart, the related Dynamic Programming Equation, [.]. The corresponding value function may be calculated here as the limit of optimal valassent 发表于 2025-3-26 10:32:33
http://reply.papertrans.cn/29/2838/283722/283722_28.png意外 发表于 2025-3-26 13:10:21
http://reply.papertrans.cn/29/2838/283722/283722_29.pngSPER 发表于 2025-3-26 19:09:23
Commitment: Wollen Sie wirklich?impulses . These restrictions are an analogy of state constraints for systems controlled by ordinary impulses of Chap. . (see also [., .]). Discussing the problem of optimal control under higher impulses and state constraints we describe it first in terms of the theory of distributions [., .]. indic