寄生虫 发表于 2025-3-23 10:38:39

http://reply.papertrans.cn/29/2837/283681/283681_11.png

杀人 发表于 2025-3-23 16:35:49

http://reply.papertrans.cn/29/2837/283681/283681_12.png

巨大没有 发表于 2025-3-23 18:27:02

K,ter vision and other fields . For a third-order HDI tensor modeling a dynamic network, this book carry out some preliminary research on latent factorization of tensors methods to implement accurate representation for dynamic networks. Further, in real industrial applications, in order to tackle

Allure 发表于 2025-3-24 01:39:33

http://reply.papertrans.cn/29/2837/283681/283681_14.png

extrovert 发表于 2025-3-24 04:14:42

https://doi.org/10.1007/978-981-19-8934-6Dynamic network representation; Latent factorization of tensors; High-dimensional and incomplete tenso

ENACT 发表于 2025-3-24 08:03:03

978-981-19-8933-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor

军械库 发表于 2025-3-24 13:20:29

Hao Wu,Xuke Wu,Xin LuoExposes readers to a novel research perspective regarding dynamic network representation.Presents four dynamic network representation methods based on latent factorization of tensors.Accomplishes accu

Hay-Fever 发表于 2025-3-24 15:26:44

SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/e/image/283681.jpg

圆柱 发表于 2025-3-24 20:54:50

http://reply.papertrans.cn/29/2837/283681/283681_19.png

antedate 发表于 2025-3-25 02:36:29

Multiple Biases-Incorporated Latent Factorization of Tensors,tion on extracting useful knowledge form an HDI tensor. However, existing LFT-based models lack solid consideration for the volatility of dynamic network data, thereby leading to the descent of model representation learning ability. To tackle this problem, this chapter proposes a multiple biases-inc
页: 1 [2] 3 4
查看完整版本: Titlebook: Dynamic Network Representation Based on Latent Factorization of Tensors; Hao Wu,Xuke Wu,Xin Luo Book 2023 The Editor(s) (if applicable) an