变成小松鼠 发表于 2025-3-21 18:33:57
书目名称Dynamic Equations on Time Scales影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0283582<br><br> <br><br>书目名称Dynamic Equations on Time Scales读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0283582<br><br> <br><br>Ganglion 发表于 2025-3-21 21:50:42
ny results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid pro978-1-4612-6659-4978-1-4612-0201-1千篇一律 发表于 2025-3-22 00:43:25
http://reply.papertrans.cn/29/2836/283582/283582_3.pngDecibel 发表于 2025-3-22 04:39:51
http://reply.papertrans.cn/29/2836/283582/283582_4.pngAerate 发表于 2025-3-22 09:22:42
http://reply.papertrans.cn/29/2836/283582/283582_5.png生命层 发表于 2025-3-22 16:00:57
Operationalisierung der zentralen Variablen in DošlÝ and Hilscher [.], and are extensions of results by Bohner and DošlÝ [.]. Throughout this chapter we denote by.the 2. × 2.-matrix.We start by recalling the concepts of symplectic and Hamiltonian matrices.生命层 发表于 2025-3-22 17:30:49
http://reply.papertrans.cn/29/2836/283582/283582_7.pngFlawless 发表于 2025-3-22 21:18:48
Second Order Linear Equations,Theorem 3.1) is why we call equation (3.1) a linear equation. If f(.) = 0 for all ., then we get the homogeneous dynamic equation L. = 0. Otherwise we say the equation . = f is nonhomogeneous. The following . is easy to prove and is left as an exercise.充满装饰 发表于 2025-3-23 03:21:15
http://reply.papertrans.cn/29/2836/283582/283582_9.pnghauteur 发表于 2025-3-23 06:48:21
Textbook 2001tions could be brought completely abreast with that for ordinary differential equations. A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensi