paltry
发表于 2025-3-28 14:55:55
Spherical Functions of Prop. 9.12 is elementary. It is due to Drinfeld. This chapter is independent of the rest of the book. In particular, we book with a local field . which is non-Archimedean but of any characteristic.
接合
发表于 2025-3-28 19:17:08
http://reply.papertrans.cn/29/2829/282869/282869_42.png
尾巴
发表于 2025-3-28 23:59:14
http://reply.papertrans.cn/29/2829/282869/282869_43.png
飓风
发表于 2025-3-29 04:07:59
Lagrangian Formulation of General Relativitylowing property: π. is the unique irreducible unramified subquotient π((..)) of the ..-module . which is normalizedly induced from the unramified character . of the upper triangular subgroup .. of ...
的是兄弟
发表于 2025-3-29 09:02:06
http://reply.papertrans.cn/29/2829/282869/282869_45.png
泥沼
发表于 2025-3-29 14:04:28
http://reply.papertrans.cn/29/2829/282869/282869_46.png
吸气
发表于 2025-3-29 15:51:49
https://doi.org/10.1007/978-3-319-51608-0lently a line bundle over .). An elliptic module of rank . over . will then be defined as an .−structure on . which becomes an elliptic module of rank . over . for any field . over . (thus .→.). For our purposes it suffices to consider only affine schemes . and elliptic modules defined by means of a trivial line bundle . alone.
prostate-gland
发表于 2025-3-29 20:18:25
http://reply.papertrans.cn/29/2829/282869/282869_48.png
合同
发表于 2025-3-30 01:09:43
http://reply.papertrans.cn/29/2829/282869/282869_49.png
凶猛
发表于 2025-3-30 05:04:04
http://reply.papertrans.cn/29/2829/282869/282869_50.png