Mitigate 发表于 2025-3-28 14:44:23

https://doi.org/10.1007/978-3-031-20995-6ations that are more suitable for medical segmentation tasks, (2) self-supervised ImageNet models learn holistic features more effectively than supervised ImageNet models, and (3) continual pre-training can bridge the domain gap between natural and medical images. We hope that this large-scale open

终端 发表于 2025-3-28 22:28:40

http://reply.papertrans.cn/29/2825/282483/282483_42.png

沙文主义 发表于 2025-3-29 01:07:10

http://reply.papertrans.cn/29/2825/282483/282483_43.png

结果 发表于 2025-3-29 05:31:20

http://reply.papertrans.cn/29/2825/282483/282483_44.png

不足的东西 发表于 2025-3-29 08:32:11

https://doi.org/10.1007/978-3-031-23629-7 test instance until it satisfies the learned shape prior. Our method is simple to implement and increases model performance. Moreover, it opens new directions for re-using mask discriminators at inference. We release the code used for the experiments at ..

不规则 发表于 2025-3-29 11:41:49

http://reply.papertrans.cn/29/2825/282483/282483_46.png

unstable-angina 发表于 2025-3-29 17:39:15

https://doi.org/10.1007/978-3-031-23759-1o extract systematically better representations for the target domain. In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique, by exploiting labeled mp-MRI data. When compared to several unsupervised domain adaptation approac

Ceremony 发表于 2025-3-29 21:23:37

http://reply.papertrans.cn/29/2825/282483/282483_48.png

JAMB 发表于 2025-3-29 23:52:40

http://reply.papertrans.cn/29/2825/282483/282483_49.png

PATHY 发表于 2025-3-30 05:59:26

http://reply.papertrans.cn/29/2825/282483/282483_50.png
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse; Third MICCAI Worksho Shadi Albarqouni