能干 发表于 2025-3-21 19:25:25

书目名称Divergent Series, Summability and Resurgence II影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0282069<br><br>        <br><br>书目名称Divergent Series, Summability and Resurgence II读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0282069<br><br>        <br><br>

证实 发表于 2025-3-21 21:12:41

http://reply.papertrans.cn/29/2821/282069/282069_2.png

ERUPT 发表于 2025-3-22 03:31:57

Tangent-to-Identity Diffeomorphisms and the Birkhoff Normalization Theorem, of germs conjugated to the translation to show that the conjugation series is 1-summable. The result is obtained as a consequence of the Ramis-Sibuya theorem jointly with a normalization theorem by Birkhoff and Kimura which we prove.

arousal 发表于 2025-3-22 07:03:13

http://reply.papertrans.cn/29/2821/282069/282069_4.png

intricacy 发表于 2025-3-22 09:17:37

Tipps und Tricks für den Sportmedizinerext chapters. These are mostly sheaves on the circle .1 of directions about 0 in .. We reformulate the Borel-Ritt theorem in terms of sheaves. In the second part of the chapter we introduce the Čech cohomology for sheaves of groups, both in the abelian and the non abelian case; and we reformulate th

remission 发表于 2025-3-22 13:50:10

https://doi.org/10.1007/978-3-642-18927-2 equations. Only part of the results are proved; otherwise, references to the classical literature are given. We begin by discussing the link between equations, systems and .-modules introducing formal and meromorphic equivalence in each case. We state and discuss the theorem of formal classificatio

remission 发表于 2025-3-22 19:30:04

http://reply.papertrans.cn/29/2821/282069/282069_7.png

身心疲惫 发表于 2025-3-22 22:49:10

Tipps und Tricks für den Sportmedizineres said . and it aims at being a detailed introduction to the subject. We present four approaches which show up to be equivalent characterizations of .-summable series. With each approach we discuss examples and we attach some applications fitting especially that point of view. The chapter includes

Custodian 发表于 2025-3-23 01:46:30

http://reply.papertrans.cn/29/2821/282069/282069_9.png

LOPE 发表于 2025-3-23 05:58:30

https://doi.org/10.1007/978-3-642-18927-2o the situation with the example of the Ramis-Sibuya series and we show that this series is .-summable for no . > 0. We expound six different theories of multisummability which extend the theories of .-summability. In most of them we found useful to treat the case when the summability depends on onl
页: [1] 2 3 4 5
查看完整版本: Titlebook: Divergent Series, Summability and Resurgence II; Simple and Multiple Michèle Loday-Richaud Book 2016 Springer International Publishing Swi