出租 发表于 2025-3-21 19:14:32
书目名称Disturbances in the linear model, estimation and hypothesis testing影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0282045<br><br> <br><br>书目名称Disturbances in the linear model, estimation and hypothesis testing读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0282045<br><br> <br><br>系列 发表于 2025-3-21 20:27:39
disturbance estimation,, as we shall see. We are, of course, interested in the vector which gives best testing results, i.e. maximal power. Unfortunately, we did not succeed in translating the maximal power criterion into a manageable optimality criterion for .. Therefore we adopt a criterion based on other considerations.HILAR 发表于 2025-3-22 02:07:40
https://doi.org/10.1007/978-981-19-3132-1and . is formalized by:.where .. and .. are constants. When .. and .. are known numbers, the value of . can be calculated for every given value of .. Here . is the dependent variable and . is the explanatory variable.没有贫穷 发表于 2025-3-22 08:16:23
http://reply.papertrans.cn/29/2821/282045/282045_4.png可转变 发表于 2025-3-22 12:36:07
https://doi.org/10.1007/978-1-4684-6956-1econometrics; research; value-at-risklacrimal-gland 发表于 2025-3-22 14:47:34
978-90-207-0772-4H. E. Stenfert Kroese B.V. 1978lacrimal-gland 发表于 2025-3-22 18:55:45
http://reply.papertrans.cn/29/2821/282045/282045_7.pngEsophagus 发表于 2025-3-23 00:28:29
https://doi.org/10.1007/978-981-19-3132-1and . is formalized by:.where .. and .. are constants. When .. and .. are known numbers, the value of . can be calculated for every given value of .. Here . is the dependent variable and . is the explanatory variable.glowing 发表于 2025-3-23 02:52:13
The Wiedemann-Franz Law in YbRh2Si2,, as we shall see. We are, of course, interested in the vector which gives best testing results, i.e. maximal power. Unfortunately, we did not succeed in translating the maximal power criterion into a manageable optimality criterion for .. Therefore we adopt a criterion based on other considerations许可 发表于 2025-3-23 08:27:08
Thermal and Statistical Physicsurpose, we developed the . estimator . of .′.; see (3.2). The estimator depends on the following matrices: the . × . matrix ., the . × . matrix ., the . × . matrix Ω = . ′, the . × . matrix Г, the . × . matrix ., and the .-element vector y. Both . and y are specified by observation and it is assumed