harmony 发表于 2025-3-23 13:44:11
https://doi.org/10.1007/978-1-349-19143-7We first review the linear Laplace equation. For functions . we define the Lagrangian . with the Einstein summation convention.漂白 发表于 2025-3-23 14:14:57
http://reply.papertrans.cn/29/2816/281523/281523_12.pngMatrimony 发表于 2025-3-23 20:54:25
http://reply.papertrans.cn/29/2816/281523/281523_13.png证实 发表于 2025-3-24 00:06:36
Stationary phase and dispersive estimatesWe begin with the evaluations of several integrals. Let .. be the .-dimensional Lebesgue measure and define淡紫色花 发表于 2025-3-24 04:48:19
http://reply.papertrans.cn/29/2816/281523/281523_15.pngGoblet-Cells 发表于 2025-3-24 08:35:53
Appendix A: Young’s inequality and interpolationYoung’s inequality bounds convolutions in Lebesgue spaces. It is part of the statement that the integral exists for almost all arguments of the convolution. Let .. denote the .-dimensional Lebesgue measure.诙谐 发表于 2025-3-24 13:34:27
Appendix B: Bessel functionsThe Bessel functions are confluent hypergeometric functions. They are solutions to confluent hypergeometric differential equations. Here is a very brief introduction.STAT 发表于 2025-3-24 16:58:31
Appendic C: The Fourier transformLet . be an integrable complex-valued function. We define its Fourier transform byincision 发表于 2025-3-24 22:48:05
http://reply.papertrans.cn/29/2816/281523/281523_19.png迷住 发表于 2025-3-24 23:35:47
Geometric pde’sWe first review the linear Laplace equation. For functions . we define the Lagrangian . with the Einstein summation convention.