harmony 发表于 2025-3-23 13:44:11

https://doi.org/10.1007/978-1-349-19143-7We first review the linear Laplace equation. For functions . we define the Lagrangian . with the Einstein summation convention.

漂白 发表于 2025-3-23 14:14:57

http://reply.papertrans.cn/29/2816/281523/281523_12.png

Matrimony 发表于 2025-3-23 20:54:25

http://reply.papertrans.cn/29/2816/281523/281523_13.png

证实 发表于 2025-3-24 00:06:36

Stationary phase and dispersive estimatesWe begin with the evaluations of several integrals. Let .. be the .-dimensional Lebesgue measure and define

淡紫色花 发表于 2025-3-24 04:48:19

http://reply.papertrans.cn/29/2816/281523/281523_15.png

Goblet-Cells 发表于 2025-3-24 08:35:53

Appendix A: Young’s inequality and interpolationYoung’s inequality bounds convolutions in Lebesgue spaces. It is part of the statement that the integral exists for almost all arguments of the convolution. Let .. denote the .-dimensional Lebesgue measure.

诙谐 发表于 2025-3-24 13:34:27

Appendix B: Bessel functionsThe Bessel functions are confluent hypergeometric functions. They are solutions to confluent hypergeometric differential equations. Here is a very brief introduction.

STAT 发表于 2025-3-24 16:58:31

Appendic C: The Fourier transformLet . be an integrable complex-valued function. We define its Fourier transform by

incision 发表于 2025-3-24 22:48:05

http://reply.papertrans.cn/29/2816/281523/281523_19.png

迷住 发表于 2025-3-24 23:35:47

Geometric pde’sWe first review the linear Laplace equation. For functions . we define the Lagrangian . with the Einstein summation convention.
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Dispersive Equations and Nonlinear Waves; Generalized Korteweg Herbert Koch,Daniel Tataru,Monica Vişan Textbook 2014 Springer Basel 2014 Fo