Localized 发表于 2025-3-21 17:21:19
书目名称Discrete and Computational Geometry影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0281180<br><br> <br><br>书目名称Discrete and Computational Geometry读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0281180<br><br> <br><br>强制令 发表于 2025-3-22 00:00:53
The Role of Liver Transplantationotal length. We present an optimal algorithm solving the problem in linear time if the edges incident to . are sorted clockwise by angle. For unsorted edges our algorithm runs in .(. log .) time. For unsorted edges we also give a linear time approximation algorithm and a lower time bound.烤架 发表于 2025-3-22 02:03:58
http://reply.papertrans.cn/29/2812/281180/281180_3.pngbonnet 发表于 2025-3-22 05:45:48
Thoracic Aorta and Its Variantsdean rigidity results regarding the existence and combinatorial characterization of expansive motions. In particular, we extend the concept of a pseudo-triangulation from the Euclidean to the spherical case. As a consequence, we formulate a set of . that must be satisfied by three-dimensional generalizations of pointed pseudo-triangulations.mucous-membrane 发表于 2025-3-22 12:23:54
The Minimum Manhattan Network Problem: A Fast Factor-3 Approximation,known whether it is NP-hard to compute minimum Manhattan networks, i.e. Manhattan networks of minimum total length. In this paper we present a factor-3 approximation algorithm for this problem. Given a set of . nodes, our algorithm takes .(. log .) time and linear space.含沙射影 发表于 2025-3-22 13:42:47
http://reply.papertrans.cn/29/2812/281180/281180_6.png含沙射影 发表于 2025-3-22 17:25:34
A Fixed Parameter Algorithm for the Minimum Number Convex Partition Problem,vex pieces. We give a fixed-parameter tractable algorithm for this problem that runs in the following time complexities:.– linear time if . is constant,.– time polynomial in . if .,.or, to be exact, in .(. . . . . 2.) time.rods366 发表于 2025-3-23 00:16:45
http://reply.papertrans.cn/29/2812/281180/281180_8.png割让 发表于 2025-3-23 03:55:17
http://reply.papertrans.cn/29/2812/281180/281180_9.png阴谋 发表于 2025-3-23 05:59:47
https://doi.org/10.1007/978-981-99-5808-5oves under different assumptions on disk radii and disk placements. For example, with . congruent disks, . moves always suffice for transforming the start configuration into the target configuration; on the other hand, . moves are sometimes necessary.