whiplash 发表于 2025-3-21 17:49:29

书目名称Discrete Geometry and Mathematical Morphology影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0281109<br><br>        <br><br>书目名称Discrete Geometry and Mathematical Morphology读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0281109<br><br>        <br><br>

发表于 2025-3-21 23:11:58

Recognition of Arithmetic Line Segments and Hyperplanes Using the Stern-Brocot Treelly, naive arithmetic hyperplanes, and we present a new approach to recognise these discrete structures based on the Stern-Brocot tree. The algorithm for DSS recognition proposes an alternative method to the state of the art, keeping the linear complexity and incremental character. While most of the

Orgasm 发表于 2025-3-22 01:54:20

Bijective Digitized 3D Rotation Based on Beam Shearsquence of three 2D shears along coordinate axes, leading to a decomposition of a 3D rotation into nine (beam) shears in total. We define a 3D digitized rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective,

悦耳 发表于 2025-3-22 06:47:40

http://reply.papertrans.cn/29/2812/281109/281109_4.png

PAEAN 发表于 2025-3-22 09:30:00

Decomposition of Rational Discrete Planes. Up to translation and symmetry, they are completely determined by a normal vector .. Excepted for a few well-identified cases, it is shown that there are two approximations . of ., satisfying ., such that the discrete plane of normal . can be partitioned into two sets having respectively the combi

Annotate 发表于 2025-3-22 14:24:59

Differential Maximum Euclidean Distance Transform Computation in Component Treesong other applications, the maximum distance transform (DT) value can describe the thickness of the connected components of the image. In this paper, we propose using the maximum distance transform value as an attribute of component tree nodes. We present a novel algorithm to compute the maximum DT

Annotate 发表于 2025-3-22 17:05:11

http://reply.papertrans.cn/29/2812/281109/281109_7.png

杠杆 发表于 2025-3-22 23:15:15

Digital Calculus Frameworks and Comparative Evaluation of Their Laplace-Beltrami Operatorsnal problems onto them. However digital surfaces (boundary of voxels) cannot benefit directly from the classical mesh calculus frameworks, since their vertex and face geometry is too poor to capture the geometry of the underlying smooth Euclidean surface well enough. This paper proposes two new calc

Guileless 发表于 2025-3-23 04:08:31

http://reply.papertrans.cn/29/2812/281109/281109_9.png

dominant 发表于 2025-3-23 09:28:47

A Khalimsky-Like Topology on the Triangular Gridsquare grid, causing the fact that the digital version of the Jordan curve theorem needs some special care. In a nutshell, the paradox can be interpreted by lines, e.g., two different color diagonals of a chessboard that go through each other without sharing a pixel. The triangular grid also has a s
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Discrete Geometry and Mathematical Morphology; Third International Sara Brunetti,Andrea Frosini,Simone Rinaldi Conference proceedings 2024