归纳 发表于 2025-3-21 18:38:49
书目名称Discrepancy of Signed Measures and Polynomial Approximation影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0281075<br><br> <br><br>书目名称Discrepancy of Signed Measures and Polynomial Approximation读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0281075<br><br> <br><br>体贴 发表于 2025-3-21 21:19:23
https://doi.org/10.1007/978-3-662-33842-1 curve or arc, then this weak*-convergence can be estimated by discrepancy bounds. For analytic Jordan curves Pommerenke has proved sharp asymptotic estimates, which can be found in Section 7.2.Keratin 发表于 2025-3-22 01:01:45
Book 2002 points is essential to obtain satisfactory estimates for the convergence of interpolating polynomials. Zeros of orthogonal polynomials are the nodes for Gauss quadrat ure formulas. Alternation points of the error curve char acterize the best approximating polynomials. In classieal complex analysisprogestin 发表于 2025-3-22 06:58:43
Discrepancy Theorems via One-Sided Bounds for Potentials,re .. is the level line of the conformal mapping .(.) of int . onto D normalized by .(..) = 0, .(..) > 0, as in (1.4.5). Then the discrepancy estimates can be formulated in terms of ..(.) + ..(.). In this chapter we shall discuss this approach carefully for general signed measures.Cantankerous 发表于 2025-3-22 09:01:38
http://reply.papertrans.cn/29/2811/281075/281075_5.png雪上轻舟飞过 发表于 2025-3-22 15:18:04
Auxiliary Facts,ion theory), Ahlfors , Lehto and Virtanen (theory of quasiconformal mappings in the plane), Walsh , Smirnov and Lebedev , Gaier , Andrievskii, Belyi, and Dzjadyk (approximation theory in the complex plane).雪上轻舟飞过 发表于 2025-3-22 17:16:41
http://reply.papertrans.cn/29/2811/281075/281075_7.pngYourself 发表于 2025-3-23 00:29:16
http://reply.papertrans.cn/29/2811/281075/281075_8.pngCHOIR 发表于 2025-3-23 04:06:08
http://reply.papertrans.cn/29/2811/281075/281075_9.pngTIGER 发表于 2025-3-23 09:07:23
http://reply.papertrans.cn/29/2811/281075/281075_10.png