撒谎 发表于 2025-3-21 16:56:44

书目名称Dirty Data Processing for Machine Learning影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0280752<br><br>        <br><br>书目名称Dirty Data Processing for Machine Learning读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0280752<br><br>        <br><br>

Hay-Fever 发表于 2025-3-22 00:12:13

http://reply.papertrans.cn/29/2808/280752/280752_2.png

Indict 发表于 2025-3-22 03:52:18

Zhixin Qi,Hongzhi Wang,Zejiao DongPresents state-of-the-art dirty data processing techniques for use in data pre-processing.Opens promising avenues for the further study of dirty data processing.Offers valuable take-away suggestions o

千篇一律 发表于 2025-3-22 07:56:44

http://image.papertrans.cn/e/image/280752.jpg

aggressor 发表于 2025-3-22 10:30:19

https://doi.org/10.1007/978-3-642-56332-4sted in various types of databases. Due to the negative impacts of dirty data on data mining and machine learning results, data quality issues have attracted widespread attention. Motivated by this, this book aims to analyze the impacts of dirty data on machine learning models and explore the proper

ARCH 发表于 2025-3-22 14:56:04

https://doi.org/10.1007/978-3-642-56332-4 in the selection of the proper model and data cleaning strategies. However, rare work has focused on this topic. Motivated by this, this chapter compares the impacts of missing, inconsistent, and conflicting data on basic classification and clustering models. Based on the evaluation observations, w

ARCH 发表于 2025-3-22 19:21:07

http://reply.papertrans.cn/29/2808/280752/280752_7.png

利用 发表于 2025-3-22 23:39:08

https://doi.org/10.1007/978-3-322-80757-1s are only able to be adopted on complete data sets, this chapter presents a generalized classification model for incomplete data in which existing classification models are easily embedded. We first generate complete views for the incomplete data based on the selection of proper attribute subsets.

亚麻制品 发表于 2025-3-23 01:50:19

http://reply.papertrans.cn/29/2808/280752/280752_9.png

excursion 发表于 2025-3-23 06:14:06

http://reply.papertrans.cn/29/2808/280752/280752_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Dirty Data Processing for Machine Learning; Zhixin Qi,Hongzhi Wang,Zejiao Dong Book 2024 The Editor(s) (if applicable) and The Author(s),