CROAK 发表于 2025-3-25 05:08:05

978-3-540-09762-4Springer-Verlag Berlin Heidelberg 1980

Type-1-Diabetes 发表于 2025-3-25 11:33:24

http://reply.papertrans.cn/29/2806/280531/280531_22.png

胎儿 发表于 2025-3-25 12:18:26

0075-8434 Overview: 978-3-540-09762-4978-3-540-38645-2Series ISSN 0075-8434 Series E-ISSN 1617-9692

TIGER 发表于 2025-3-25 17:38:12

https://doi.org/10.1007/978-981-10-6493-7.). Next, White picks a compact interval W. ⊂ B. of length ℓ(W.) = αℓ(B.). Then Black picks a compact interval B. ⊂ W. of length ℓ(B.) = βℓ(W.), etc. In this way, a nested sequence of compact intervals . is generated, with lengths . It is clear that . consists of a single point.

NAIVE 发表于 2025-3-25 21:31:26

https://doi.org/10.1007/978-981-10-6493-7me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)

忙碌 发表于 2025-3-26 03:15:16

Simultaneous Approximation to Algebraic Numbers,roximable, so that . where q.,...,q., p are rational integers and where q = max(|q.|,...,|q.|) ≠ 0. Taking q. = ... = q. = 0, we have .. . 1,..,...,... ℚ, . d. ... q.,...,q., p . q = max(|q.|,..., |q.|) > 0.

鸽子 发表于 2025-3-26 06:06:41

Norm Form Equations,n element . of K under ϕ. by ϕ.. We will always tacitly assume that ϕ., is the identity map, so that .. = ., and we shall say that .. = ., ..,..... are the conjugates of .. In this notation ℜ(.) = ........ Given a linear form . with coefficients in K we write

密码 发表于 2025-3-26 10:34:18

http://reply.papertrans.cn/29/2806/280531/280531_28.png

繁荣地区 发表于 2025-3-26 15:34:41

Complex Landscapes of Spatial Interactionn element . of K under ϕ. by ϕ.. We will always tacitly assume that ϕ., is the identity map, so that .. = ., and we shall say that .. = ., ..,..... are the conjugates of .. In this notation ℜ(.) = ........ Given a linear form . with coefficients in K we write

翅膀拍动 发表于 2025-3-26 20:22:54

7楼
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Diophantine Approximation; Wolfgang M. Schmidt Book 1980 Springer-Verlag Berlin Heidelberg 1980 Diophantine approximation.Diophantische Ap