冰冻 发表于 2025-3-21 16:16:14

书目名称Dimension Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0280457<br><br>        <br><br>书目名称Dimension Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0280457<br><br>        <br><br>

军械库 发表于 2025-3-21 22:27:46

http://reply.papertrans.cn/29/2805/280457/280457_2.png

Promotion 发表于 2025-3-22 03:16:46

http://reply.papertrans.cn/29/2805/280457/280457_3.png

过份艳丽 发表于 2025-3-22 05:24:56

,-Spaces and the Failure of the Sum and Subset Theorems for ,,,iven ., we present a Tychonoff space . which is the union of two zero subspaces .., .. such that dim... = dim... = 0 while dim.. = .. We also construct Tychonoff spaces .  with dim.. = 0 that contain zero subspaces . with dim.. as large as we wish, showing the failure of the subset theorem for dim. in a strong form.

试验 发表于 2025-3-22 10:19:49

http://reply.papertrans.cn/29/2805/280457/280457_5.png

PUT 发表于 2025-3-22 15:18:25

http://reply.papertrans.cn/29/2805/280457/280457_6.png

PUT 发表于 2025-3-22 18:42:35

Antony S. R. Manstead,Gün R. Seminnly defining the meaning of the statement d(.) ≤ . for every non-negative integer . and every space .. It will then be understood that (1) d(.) ≤−1 iff . = ∅, (2) d(.) = . if the statement d(.) ≤ . is false for every integer . ≥−1 and (3) if d(.) ≤ . is true for some integer . ≥−1, then d(.) is the first such integer.

眨眼 发表于 2025-3-22 22:15:22

Wolfgang Stroebe,Klaus Jonas,Miles Hewstoneng a normal subspace .. with .. This shows that the subset theorem for the covering or large inductive dimension of normal Hausdorff spaces does not always hold. The two examples together show that on the class of normal Hausdorff spaces, ., . and . are distinct dimension functions and the only relations between them are . and ..

低能儿 发表于 2025-3-23 03:32:10

Book 2019standard facts of general topology, the book is written in a reader-friendly style suitable for self-study. It contains enough material for one or more graduate courses in dimension theory and/or general topology. More than half of the contents do not appear in existing books, making it also a good reference for libraries and researchers..

Fibrinogen 发表于 2025-3-23 08:50:04

http://reply.papertrans.cn/29/2805/280457/280457_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Dimension Theory; A Selection of Theor Michael G. Charalambous Book 2019 Springer Nature Switzerland AG 2019 covering dimension.inductive d