VEER 发表于 2025-3-21 19:46:41

书目名称Differential-Geometrical Methods in Statistics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0278845<br><br>        <br><br>书目名称Differential-Geometrical Methods in Statistics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0278845<br><br>        <br><br>

obnoxious 发表于 2025-3-21 21:43:57

Curved Exponential Families and Edgeworth Expansions or distribution in S. In chapter, we decompose . into a pair (û, v) of statistics such that û is asymptotically sufficient and v is asymptotically ancillary. The Edeworth expansion of the joint distribution p (û, v) is given explicitly up to the third order terms by using the related geometrical quantities in S and M.

Diatribe 发表于 2025-3-22 01:21:03

http://reply.papertrans.cn/28/2789/278845/278845_3.png

思想流动 发表于 2025-3-22 07:21:35

http://reply.papertrans.cn/28/2789/278845/278845_4.png

变形词 发表于 2025-3-22 09:10:53

Restricted Geometric Relationshipsial geometry. The dualistic structure of the geometry is elucidated by using the α-flat manifold will turn out to be an interesting generalization of the Euclidean space, admitting the Pythagorean relation with respect to the α-divergence of two points.

elucidate 发表于 2025-3-22 16:20:02

Enhancing The Quality of Retrieval Methods or distribution in S. In chapter, we decompose . into a pair (û, v) of statistics such that û is asymptotically sufficient and v is asymptotically ancillary. The Edeworth expansion of the joint distribution p (û, v) is given explicitly up to the third order terms by using the related geometrical quantities in S and M.

elucidate 发表于 2025-3-22 21:06:00

Eliminating Selves, Reducing Personsrms of the covariance of an efficient estimators are decomposed into the sum of three non-negative geometrical terms. This proves that the bias corrected maximum likelihood estimator is the best estimator from the point of view of the third order asymptotic evaluation. The effect of parametrization is elucidated from the geometrical viewpoint.

他很灵活 发表于 2025-3-22 21:21:18

http://reply.papertrans.cn/28/2789/278845/278845_8.png

消息灵通 发表于 2025-3-23 01:31:17

https://doi.org/10.1007/978-3-031-13995-6ests, not depending on a specific model M. We also give the characteristics of the conditional test conditioned on the asymptotic ancillary. The third-order characteristics of interval estimators are also shown. For the sake of simplicity, we maily treat a one-dimensional model, and the multi-dimensional generalization is explained shortly.

种属关系 发表于 2025-3-23 05:50:36

http://reply.papertrans.cn/28/2789/278845/278845_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Differential-Geometrical Methods in Statistics; Shun-ichi Amari Book 1985 Springer-Verlag Berlin Heidelberg 1985 Estimator.probability.pro