重婚 发表于 2025-3-21 19:45:59
书目名称Differential Geometry of Lightlike Submanifolds影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0278767<br><br> <br><br>书目名称Differential Geometry of Lightlike Submanifolds读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0278767<br><br> <br><br>尽责 发表于 2025-3-21 23:01:20
Lightlike hypersurfaces,from the point of physics lightlike hypersurfaces are of importance as they are models of various types of horizons, such as Killing, dynamical and conformal horizons, studied in general relativity (see some details in Chapter 3). However, due to the degenerate metric of a lightlike submanifold ., o凌辱 发表于 2025-3-22 02:18:29
http://reply.papertrans.cn/28/2788/278767/278767_3.png哄骗 发表于 2025-3-22 05:58:13
,Submanifolds of indefinite Kähler manifolds,degenerate case , CR-lightlike submanifolds are non-trivial (i.e., they do not include invariant (complex) and real parts). Since then considerable work has been done on new concepts to obtain a variety of classes of lightlike submanifolds. In this chapter we present up-to-date new resu和谐 发表于 2025-3-22 09:40:58
http://reply.papertrans.cn/28/2788/278767/278767_5.pngdisrupt 发表于 2025-3-22 15:57:12
,Submanifolds of indefinite quaternion Kähler manifolds,nion Käahler manifolds. We study the geometry of real lightlike hypersurfaces, the structure of lightlike submanifolds, both, of indefinite quaternion Kähler manifolds and show that a quaternion lightlike submanifold is always totally geodesic. This result implies that the study of lightlike submanidisrupt 发表于 2025-3-22 20:08:48
http://reply.papertrans.cn/28/2788/278767/278767_7.png带子 发表于 2025-3-22 22:50:22
Rationalitäten des KinderschutzesThe objective of this chapter is to present an up-to-date account of the works published on the general theory of lightlike submanifolds of semi-Riemannian manifolds. This includes unique existence theorems for screen distributions, geometry of totally umbilical, minimal and warped product lightlike submanifolds.barium-study 发表于 2025-3-23 04:29:33
A: Aanleiding of Activerende GebeurtenisIn this chapter we present applications of lightlike geometry in the study of null 2-surfaces in spacetimes, lightlike versions of harmonic maps and morphisms, CRstructures in general relativity and lightlike contact geometry in physics.miracle 发表于 2025-3-23 06:38:09
Half-lightlike submanifolds,There are two cases of codimension 2 lightlike submanifolds M since for this type the dimension of their radical distribution Rad. is either one or two. A codimension 2 lightlike submanifold is called half-lightlike if dim(Rad .)=1. The objective of this chapter is to present up-to-date results of this sub-case.