文化修养 发表于 2025-3-21 16:43:58
书目名称Differential Geometry in the Large影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0278761<br><br> <br><br>书目名称Differential Geometry in the Large读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0278761<br><br> <br><br>草率男 发表于 2025-3-21 21:34:20
0075-8434 onnelly on rigidity, which is very much in the spirit of these notes (cf. R. Connelly, Conjectures and open questions in ri gidity, Proceedings of Internationa978-3-662-21563-0Series ISSN 0075-8434 Series E-ISSN 1617-9692Jubilation 发表于 2025-3-22 01:20:46
http://reply.papertrans.cn/28/2788/278761/278761_3.png变化 发表于 2025-3-22 07:57:21
https://doi.org/10.1007/978-3-642-98032-9onvex set with a non-empty interior. It is easy to show that a convex body is homeomorphic to a solid sphere (but we will not need this fact). In these notes we will assume in addition that the boundary surface of a convex body in E. is several times differentiable.抒情短诗 发表于 2025-3-22 10:01:01
Hadamard’s Characterization of the Ovaloidsonvex set with a non-empty interior. It is easy to show that a convex body is homeomorphic to a solid sphere (but we will not need this fact). In these notes we will assume in addition that the boundary surface of a convex body in E. is several times differentiable.Anthology 发表于 2025-3-22 14:11:31
http://reply.papertrans.cn/28/2788/278761/278761_6.pngAnthology 发表于 2025-3-22 18:11:00
https://doi.org/10.1007/978-3-642-98032-9onvex set with a non-empty interior. It is easy to show that a convex body is homeomorphic to a solid sphere (but we will not need this fact). In these notes we will assume in addition that the boundary surface of a convex body in E. is several times differentiable.ASTER 发表于 2025-3-23 00:27:18
,Mittel zur Steigerung der Abwehrkräfte,nstant mean curvature H. We will actually prove the stronger result that if the principle curvatures k. and k. of an ovaloid satisfy a relationship k. = f(k.) where f is a decreasing function, then the ovaloid is a sphere. Since K = k.k. and ., the two results, 1) and 2) stated above will follows Ir马笼头 发表于 2025-3-23 02:06:56
http://reply.papertrans.cn/28/2788/278761/278761_9.pngcorporate 发表于 2025-3-23 09:04:46
John Rooksby,Ian Sommerville,Mike PiddThe first topic to be discussed will be Euler’s famous relation between the number of faces, edges and vertices of a convex polyhedron.