satisficer 发表于 2025-3-21 16:50:11

书目名称Differential Geometry and Topology影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0278759<br><br>        <br><br>书目名称Differential Geometry and Topology读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0278759<br><br>        <br><br>

cathartic 发表于 2025-3-22 00:09:40

http://reply.papertrans.cn/28/2788/278759/278759_2.png

Excise 发表于 2025-3-22 00:28:06

http://reply.papertrans.cn/28/2788/278759/278759_3.png

ostensible 发表于 2025-3-22 06:04:21

N. N. Polyakhov,M. P. Yushkov,S. A. ZegzhdaIn this paper we have proved the non-existence of minimal surfaces with 5 flat ends and presented some new examples of minimal surfaces with parallel and flat ends.

先驱 发表于 2025-3-22 12:18:49

Codimension 1 and 2 immersions of lens spaces,The existence and classification problems of codimension 1 and 2 immersions of lens spaces in Euclidean spaces have been solved completely. Also, the ring structures of .(L.(p)) for n≦3 are determined.

verdict 发表于 2025-3-22 14:22:42

On complete minimal surfaces with parallel and flat ends,In this paper we have proved the non-existence of minimal surfaces with 5 flat ends and presented some new examples of minimal surfaces with parallel and flat ends.

verdict 发表于 2025-3-22 18:21:58

Approximation by Scalar Systems,on about the stable holomorphic vector bundles, we have proved the following:. Let . be a compact Riemann surface with genus .(. ≥ 2), .(.(.)) the set of all full, indecomposable holomorphic maps with degree . from . to .(.), (see §2 for the detailed definitions of the degree and full property).

ILEUM 发表于 2025-3-22 23:56:20

http://reply.papertrans.cn/28/2788/278759/278759_8.png

诱拐 发表于 2025-3-23 04:56:38

http://reply.papertrans.cn/28/2788/278759/278759_9.png

Androgen 发表于 2025-3-23 09:31:18

http://reply.papertrans.cn/28/2788/278759/278759_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Differential Geometry and Topology; Proceedings of the S Boju Jiang,Chia-Kuei Peng,Zixin Hou Conference proceedings 1989 Springer-Verlag Be