迎合 发表于 2025-3-26 23:05:55

Ein Ausflug in unser Immunsystemction of the unit complex numbers .(1) on . and the action of the unit quaternions .(2) on . (., the action is defined in terms of multiplication in a larger algebra containing both the group .(.) and .). The group .(.), called a ., is defined as a certain subgroup of units of an algebra Cl., the .

本土 发表于 2025-3-27 02:03:37

http://reply.papertrans.cn/28/2788/278753/278753_32.png

远地点 发表于 2025-3-27 06:30:56

Geometry and Computinghttp://image.papertrans.cn/d/image/278753.jpg

ORE 发表于 2025-3-27 10:59:52

https://doi.org/10.1007/978-3-030-46047-1Differential geometry for computing; Differential geometry for geometry processing; Differential geome

哑剧 发表于 2025-3-27 15:59:56

978-3-030-46049-5Springer Nature Switzerland AG 2020

陈腐的人 发表于 2025-3-27 19:51:27

https://doi.org/10.1007/3-7985-1570-0that each of ..(..) and . contains a countable family of very nice finite-dimensional subspaces . (and .), where . is the space of (real) . on .., that is, the restrictions of the harmonic homogeneous polynomials of degree . (in . + 1 real variables) to .. (and similarly for .); these polynomials sa

diskitis 发表于 2025-3-27 22:05:08

http://reply.papertrans.cn/28/2788/278753/278753_37.png

蕨类 发表于 2025-3-28 06:00:50

http://reply.papertrans.cn/28/2788/278753/278753_38.png

注视 发表于 2025-3-28 09:32:18

Spherical Harmonics and Linear Representations of Lie Groups,that each of ..(..) and . contains a countable family of very nice finite-dimensional subspaces . (and .), where . is the space of (real) . on .., that is, the restrictions of the harmonic homogeneous polynomials of degree . (in . + 1 real variables) to .. (and similarly for .); these polynomials sa

prosperity 发表于 2025-3-28 13:48:55

http://reply.papertrans.cn/28/2788/278753/278753_40.png
页: 1 2 3 [4] 5 6
查看完整版本: Titlebook: Differential Geometry and Lie Groups; A Second Course Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 2020 Dif