CAP 发表于 2025-3-21 17:12:49

书目名称Differential Geometric Structures and Applications影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0278735<br><br>        <br><br>书目名称Differential Geometric Structures and Applications读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0278735<br><br>        <br><br>

狼群 发表于 2025-3-21 21:01:03

http://reply.papertrans.cn/28/2788/278735/278735_2.png

枯燥 发表于 2025-3-22 02:35:13

Mixed 3-Sasakian Statistical Manifolds and Statistical Submersions,s and paraquaternionic Kähler-like statistical manifolds. Moreover, we investigate the geometry of statistical submersions with total space a mixed 3-Sasakian manifold or a paraquaternionic Kähler-like statistical manifold. Moreover, we provide some illustrative examples.

不容置疑 发表于 2025-3-22 08:15:41

How to Conduct a Clinical Trial: Overviewifold. Finally, we prove that a weak .-Kenmotsu manifold and admitting an .-Ricci soliton structure, whose non-zero potential vector field is weak contact or is collinear to ., is an Einstein manifold.

Buttress 发表于 2025-3-22 10:35:14

Richie Kohli,Harjit S. Sehgal,Peter Milgromn foliated mappings. Finally, we recall suspension construction, which is used to construct examples of transversely harmonic maps between foliated manifolds and discuss the twistor methods in this case.

抗体 发表于 2025-3-22 16:19:02

Paul J. H. Strong,Victor Squires and the growth of leaves. Additionally, we present an illustrative examples, as well as a scenario with zero topological codimension. In this context, instances of weak solenoids embodying this characteristic have been previously established by Dyer, Hurder, and Lukina.

抗体 发表于 2025-3-22 17:28:26

Springer Series on Environmental Managementof our specific setting and some available results. Third, we provide some new results in our direction, which extend the recent result of [.], where an answer to the above question is given via the topological information on ..

COW 发表于 2025-3-23 01:14:35

Weak ,-Kenmotsu Manifolds and ,-Ricci Solitons,ifold. Finally, we prove that a weak .-Kenmotsu manifold and admitting an .-Ricci soliton structure, whose non-zero potential vector field is weak contact or is collinear to ., is an Einstein manifold.

删减 发表于 2025-3-23 02:00:59

Twistor Bundles of Foliated Riemannian Manifolds,n foliated mappings. Finally, we recall suspension construction, which is used to construct examples of transversely harmonic maps between foliated manifolds and discuss the twistor methods in this case.

Cupping 发表于 2025-3-23 08:13:27

http://reply.papertrans.cn/28/2788/278735/278735_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Differential Geometric Structures and Applications; 4th International Wo Vladimir Rovenski,Paweł Walczak,Robert Wolak Conference proceeding