你太谦虚 发表于 2025-3-21 17:38:30

书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0278722<br><br>        <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0278722<br><br>        <br><br>

干旱 发表于 2025-3-21 21:52:22

Progress in Mathematicshttp://image.papertrans.cn/d/image/278722.jpg

BET 发表于 2025-3-22 02:07:22

Differential Galois Theory and Non-Integrability of Hamiltonian Systems978-3-0348-8718-2Series ISSN 0743-1643 Series E-ISSN 2296-505X

COWER 发表于 2025-3-22 04:43:32

Lipogenesis Pathway: Radiolabeled Choline,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapter 2).

Torrid 发表于 2025-3-22 12:15:46

http://reply.papertrans.cn/28/2788/278722/278722_5.png

代理人 发表于 2025-3-22 15:34:28

http://reply.papertrans.cn/28/2788/278722/278722_6.png

代理人 发表于 2025-3-22 19:34:39

Laura Evangelista,Alessandra ZorzAfter the long preliminary work of Chapters 2 and 3, we now give the central theoretical results of this book. They will be used in a systematic way in the rest of this book.

抒情短诗 发表于 2025-3-23 00:11:09

http://reply.papertrans.cn/28/2788/278722/278722_8.png

GONG 发表于 2025-3-23 05:20:20

Introduction,During recent years the search for non-integrability criteria for Hamiltonian systems based upon the behaviour of solutions in the complex domain has acquired more and more relevance.

玷污 发表于 2025-3-23 06:20:25

Non-integrability Theorems,After the long preliminary work of Chapters 2 and 3, we now give the central theoretical results of this book. They will be used in a systematic way in the rest of this book.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst